Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 7: 258, 2016.
Article in English | MEDLINE | ID: mdl-27458382

ABSTRACT

Magnesium ion (Mg(2+)) is the fourth most common cation in the human body, and has a crucial role in many physiological functions. Mg(2+) homeostasis is an important contributor to bone development, however, its roles in the development of dental mineralized tissues have not yet been well known. We identified that transient receptor potential cation channel, subfamily M, member 7 (TRPM7), was significantly upregulated in the mature ameloblasts as compared to other ameloblasts through our whole transcript microarray analyses of the ameloblasts. TRPM7, an ion channel for divalent metal cations with an intrinsic serine/threonine protein kinase activity, has been characterized as a key regulator of whole body Mg(2+) homeostasis. Semi-quantitative PCR and immunostaining for TRMP7 confirmed its upregulation during the maturation stage of enamel formation, at which ameloblasts direct rapid mineralization of the enamel matrix. The significantly hypomineralized craniofacial structures, including incisors, molars, and cranial bones were demonstrated by microCT analysis, von Kossa and trichrome staining in Trpm7 (Δkinase∕+) mice. A previously generated heterozygous mouse model with the deletion of the TRPM7 kinase domain. Interestingly, the skeletal phenotype of Trpm7 (Δkinase∕+) mice resembled those found in the tissue-nonspecific alkaline phosphatase (Alpl) KO mice, thus we further examined whether ALPL protein content and alkaline phosphatase (ALPase) activity in ameloblasts, odontoblasts and osteoblasts were affected in those mice. While ALPL protein in Trpm7 (Δkinase∕+) mice remained at the similar level as that in wt mice, ALPase activities in the Trpm7 (Δkinase∕+) mice were almost nonexistent. Supplemented magnesium successfully rescued the activities of ALPase in ameloblasts, odontoblasts and osteoblasts of Trpm7 (Δkinase∕+) mice. These results suggested that TRPM7 is essential for mineralization of enamel as well as dentin and bone by providing sufficient Mg(2+) for the ALPL activity, underlining the key importance of ALPL for biomineralization.

2.
Sci Rep ; 5: 14172, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26387549

ABSTRACT

The bone mineral density (BMD) of astronauts decreases specifically in the weight-bearing sites during spaceflight. It seems that osteoclasts would be affected by a change in gravity; however, the molecular mechanism involved remains unclear. Here, we show that the mineral density of the pharyngeal bone and teeth region of TRAP-GFP/Osterix-DsRed double transgenic medaka fish was decreased and that osteoclasts were activated when the fish were reared for 56 days at the international space station. In addition, electron microscopy observation revealed a low degree of roundness of mitochondria in osteoclasts. In the whole transcriptome analysis, fkbp5 and ddit4 genes were strongly up-regulated in the flight group. The fish were filmed for abnormal behavior; and, interestingly, the medaka tended to become motionless in the late stage of exposure. These results reveal impaired physiological function with a change in mechanical force under microgravity, which impairment was accompanied by osteoclast activation.


Subject(s)
Bone Density/physiology , Bone Resorption/physiopathology , Osteoclasts/physiology , Osteogenesis/physiology , Weightlessness , Animals , Animals, Genetically Modified , Bone and Bones/physiology , Extraterrestrial Environment , Mitochondria/physiology , Oryzias , Osteoblasts/physiology , Space Flight , Spacecraft , Tacrolimus Binding Proteins/biosynthesis , Tacrolimus Binding Proteins/genetics , Tooth/physiology , Transcription Factors/biosynthesis , Transcription Factors/genetics , Up-Regulation
3.
Microscopy (Oxf) ; 63(2): 141-53, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24463193

ABSTRACT

The small-sized teleost fish medaka, Oryzias latipes, has as many as 1000 pharyngeal teeth undergoing continuous replacement. In this study, we sought to identify the tooth-forming units and determine its replacement cycles, and further localize odontogenic stem cell niches in the pharyngeal dentition of medaka to gain insights into the mechanisms whereby continuous tooth replacement is maintained. Three-dimensional reconstruction of pharyngeal epithelium and sequential fluorochrome labeling of pharyngeal bones and teeth indicated that the individual functional teeth and their successional teeth were organized in families, each comprising up to five generations of teeth and successional tooth germs, and that the replacement cycle of functional teeth was approximately 4 weeks. BrdU label/chase experiments confirmed the existence of clusters of label-retaining epithelial cells at the posterior end of each tooth family where the expression of pluripotency marker Sox2 was confirmed by in situ hybridization. Label-retaining cells were also identified in the mesoderm immediately adjacent to the posterior end of each tooth family. These data suggest the importance of existence of slow-cycling dental epithelial cells and Sox2 expressions at the posterior end of each tooth family to maintain continuous tooth formation and replacement in the pharyngeal dentition of medaka.


Subject(s)
Odontogenesis/physiology , Oryzias/growth & development , Tooth Germ/growth & development , Tooth/growth & development , Animals , Mesoderm/cytology , Pharynx/anatomy & histology , Pharynx/physiology , Regeneration/physiology , SOXB1 Transcription Factors/biosynthesis , Staining and Labeling , Stem Cell Niche , Stem Cells , Tooth/embryology , Tooth Germ/embryology
4.
J Electron Microsc (Tokyo) ; 60(1): 79-87, 2011.
Article in English | MEDLINE | ID: mdl-21030417

ABSTRACT

Mineralization of circumpulpal dentin has been interpreted in such a way that predentin matrix is abruptly converted to almost fully mineralized dentin at the mineralization front. A group of investigators pointed out the existence of intermediary layer along the mineralization front of rat incisor dentin and claimed that dentin mineralization is a rather transient process. Owing to a paucity of information, however, the entity of transient mineralization of dentin has remained elusive. Here we confirmed the existence of a lightly mineralized layer (LL) along the mineralization front of rat incisor dentin, recognizable by both light and electron microscopy, in routinely processed specimens. LL less than 3 µm thick was shown to be located along the mineralization front of crown-analog dentin and tapered out toward the root analog of the incisor. Electron microscopy revealed that mineral deposition first occurred in the non-collagenous matrix of LL and that mineralization of collagen fibers took place sometime later at the conventional mineralization front. Microscopic appearance of the mineral phase of LL varied considerably depending on the histological processing of ultrathin sections, thus explaining the inconsistent interpretation of dentin mineralization in previous studies. These data suggest that mineralization of circumpulpal dentin in rat incisors proceeds in a stepwise or a transient manner, initiated by crystal deposition in the non-collagenous matrix followed by massive mineral deposition in collagen fibers at the mineralization front. The thickness of LL where only the non-collagenous matrix is mineralized may vary in relation to differences in the local non-collagenous matrix and also the rate of collagen mineralization in the respective portions of circumpulpal dentin.


Subject(s)
Calcification, Physiologic , Dentin/metabolism , Histocytochemistry/methods , Incisor/metabolism , Microscopy, Electron/methods , Tooth Root/metabolism , Animals , Collagen/ultrastructure , Dental Restoration, Permanent , Rats , Rats, Sprague-Dawley , Rats, Wistar
5.
Arch Histol Cytol ; 73(3): 139-48, 2010.
Article in English | MEDLINE | ID: mdl-22572181

ABSTRACT

Ectodermal contribution to the induction of pharyngeal teeth that form in the endodermal territory of the oropharyngeal cavity in some teleost fishes has been a matter of considerable debate. To determine the role of ectodermal cell signaling in scale and tooth formation and thereby to gain insights in evolutionary origin of teeth, we analyzed scales and teeth in rs-3 medaka mutants characterized by reduced scale numbers due to aberrant splicing of the ectodysplasin-A receptor (edar). Current data show that, in addition to a loss of scales (83% reduction), a drastic loss of teeth occurred in both oral (43.5% reduction) and pharyngeal (73.5% reduction) dentitions in rs-3. The remaining scales of rs-3 were irregular in shape and nearly 3 times larger in size relative to those of the wild-type. In contrast, there was no abnormality in size and shape in the remaining teeth of rs-3. In wild-type medaka embryos, there was a direct contact between the surface ectoderm and rostral endoderm in pharyngeal regions before the onset of pharyngeal tooth formation. However, there was no sign of ectodermal cell migration in the pharyngeal endoderm and hence no direct evidence of any ectodermal contribution to pharyngeal odontogenesis. These data suggest differential roles for Eda-Edar signaling in the induction and growth of scales and teeth and support the intrinsic odontogenic competence of the rostral endoderm in medaka.


Subject(s)
Animal Structures/anatomy & histology , Biological Evolution , Oryzias/anatomy & histology , Oryzias/genetics , Pharynx/anatomy & histology , Receptors, Ectodysplasin/genetics , Tooth/anatomy & histology , Animals , Ectoderm/anatomy & histology , Ectoderm/ultrastructure , Embryo, Nonmammalian/ultrastructure , Endoderm/anatomy & histology , Endoderm/ultrastructure , Female , Male , Mutation/genetics , Oryzias/embryology , Pharynx/diagnostic imaging , Phenotype , Tomography, X-Ray Computed , Tooth/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...