Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Virol J ; 21(1): 141, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902719

ABSTRACT

BACKGROUND: Despite dengue virus (DENV) outbreak in Gabon a decade ago, less is known on the potential circulation of DENV serotypes in the country. Previous studies conducted in some areas of the country, are limited to hospital-based surveys which reported the presence of some cases of serotype 2 and 3 seven years ago and more recently the serotype 1. As further investigation, we extend the survey to the community of Moyen Ogooué region with the aim to assess the presence of the dengue virus serotypes, additionally to characterize chikungunya (CHIKV) infection and describe the symptomatology associated with infections. METHOD: A cross-sectional survey was conducted from April 2020 to March 2021. The study included participants of both sexes and any age one year and above, with fever or history of fever in the past seven days until blood collection. Eligible volunteers were clinically examined, and blood sample was collected for the detection of DENV and CHIKV using RT-qPCR. Positive samples were selected for the target sequencing. RESULTS: A total of 579 volunteers were included. Their mean age (SD) was 20 (20) years with 55% of them being female. Four cases of DENV infection were diagnosed giving a prevalence of 0.7% (95%CI: 0.2-1.8) in our cohort while no case of CHIKV was detected. The common symptoms and signs presented by the DENV cases included fatigue, arthralgia myalgia, cough, and loss of appetite. DENV-1was the only virus detected by RT-qPCR. CONCLUSION: Our results confirm the presence of active dengue infection in the region, particularly DENV-1, and could suggest the decline of DENV-2 and DENV-3. Continuous surveillance remains paramount to comprehensively describe the extent of dengue serotypes distribution in the Moyen-Ogooué region of Gabon.


Subject(s)
Dengue Virus , Dengue , Serogroup , Humans , Gabon/epidemiology , Dengue Virus/genetics , Dengue Virus/classification , Dengue Virus/isolation & purification , Female , Male , Dengue/epidemiology , Dengue/virology , Cross-Sectional Studies , Adult , Young Adult , Adolescent , Child, Preschool , Child , Middle Aged , Infant , Chikungunya Fever/epidemiology , Chikungunya Fever/virology , Aged , Prevalence , Chikungunya virus/genetics , Chikungunya virus/classification , Chikungunya virus/isolation & purification
2.
Viruses ; 16(5)2024 04 28.
Article in English | MEDLINE | ID: mdl-38793579

ABSTRACT

Acute respiratory infections are a major global burden in resource-limited countries, including countries in Africa. Although COVID-19 has been well studied since the pandemic emerged in Gabon, Central Africa, less attention has been paid to other respiratory viral diseases, and very little data are available. Herein, we provide the first data on the genetic diversity and detection of 18 major respiratory viruses in Gabon during the COVID-19 pandemic. Of 582 nasopharyngeal swab specimens collected from March 2020 to July 2021, which were SARS-CoV-2 negative, 156 were positive (26%) for the following viruses: enterovirus (20.3%), human rhinovirus (HRV) (4.6%), human coronavirus OC43 (1.2%), human adenovirus (0.9%), human metapneumovirus (hMPV) (0.5%), influenza A virus (IAV) (0.3%), and human parainfluenza viruses (0.5%). To determine the genetic diversity and transmission route of the viruses, phylogenetic analyses were performed using genome sequences of the detected viruses. The IAV strain detected in this study was genetically similar to strains isolated in the USA, whereas the hMPV strain belonging to the A2b subtype formed a cluster with Kenyan strains. This study provides the first complete genomic sequences of HRV, IAV, and hMPV detected in Gabon, and provides insight into the circulation of respiratory viruses in the country.


Subject(s)
COVID-19 , Genetic Variation , Phylogeny , Respiratory Tract Infections , Humans , Gabon/epidemiology , COVID-19/epidemiology , COVID-19/virology , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Male , Adult , Female , Child , Middle Aged , Adolescent , Child, Preschool , Young Adult , Rhinovirus/genetics , Rhinovirus/isolation & purification , Rhinovirus/classification , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Metapneumovirus/classification , Genome, Viral , Nasopharynx/virology , Infant , Aged , Pandemics , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification
3.
Cell Rep ; 43(3): 113887, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38458195

ABSTRACT

mRNA vaccines against the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicit strong T cell responses. However, a clonal-resolution analysis of T cell responses to mRNA vaccination has not been performed. Here, we temporally track the CD8+ T cell repertoire in individuals who received three shots of the BNT162b2 mRNA vaccine through longitudinal T cell receptor sequencing with peptide-human leukocyte antigen (HLA) tetramer analysis. We demonstrate a shift in T cell responses between the clonotypes with different kinetics: from early responders that expand rapidly after the first shot to main responders that greatly expand after the second shot. Although the main responders re-expand after the third shot, their clonal diversity is skewed, and newly elicited third responders partially replace them. Furthermore, this shift in clonal dominance occurs not only between, but also within, clonotypes specific for spike epitopes. Our study will be a valuable resource for understanding vaccine-induced T cell responses in general.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , BNT162 Vaccine , COVID-19/prevention & control , CD8-Positive T-Lymphocytes , Vaccination
4.
Food Chem ; 441: 138317, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38199102

ABSTRACT

The bright red color of Parma ham is mainly derived from zinc protoporphyrin IX (ZnPP), which exists in both water-soluble and insoluble states. Water-soluble ZnPP mainly binds to hemoglobin, however, the presence of water-insoluble ZnPP remains unexplained. Therefore, we aimed to elucidate how ZnPP exists in a water-insoluble state by focusing on its binding substance. Depending on the skeletal muscle, water-insoluble ZnPP comprised 30-50% of total ZnPP. The ZnPP water extractability was positively correlated with muscle pH. Water-insoluble ZnPP was extractable with a high-pH solution and existed as a complex with myoglobin or hemoglobin; nevertheless, myoglobin-binding ZnPP was more abundant. Furthermore, the water solubility of the myoglobin globin moiety at pH 5.5-6.0 was reduced by ZnPP binding. These results suggest that water-insoluble ZnPP mainly exists as a ZnPP-Mb complex, with low solubility attributed to the low pH of the ham.


Subject(s)
Myoglobin , Pork Meat , Myoglobin/chemistry , Water , Protoporphyrins/chemistry , Hemoglobins , Hydrogen-Ion Concentration
5.
Parasit Vectors ; 16(1): 360, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828572

ABSTRACT

BACKGROUND: Aedes albopictus and Aedes aegypti are known for their potential as vectors of dengue (DENV) and chikungunya (CHIKV) viruses. However, entomological surveys are mostly carried out during epidemics. In Gabon where outbreaks of both viruses have occurred, there is no vector control program targeting these arboviruses. Therefore, we assessed the presence of Aedes species along a rural-urban gradient in Lambaréné (Gabon) and its surroundings and determined ecological factors associated to their presence. METHODS: An entomological survey was conducted in Lambaréné and its surrounding rural areas. Mosquitoes were collected with aspirators around human dwellings, and ecological and environmental data were collected from each study area. Morphological identification keys were used to identify Aedes species. RNA was extracted from pools of female mosquitoes and amplified by RT-qPCR to detect the presence of DENV and CHIKV. RESULTS: Overall, the most common vector collected was Aedes albopictus (97%, 4236/4367 specimens), followed by Aedes aegypti (3%, 131/4367). Albopictus vectors was more abundant in the rural area (Wilcoxon signed-rank test, Z = 627, P = 0.043) than in the urban area. In the urban area, a higher number of mosquitoes (45%) were recorded in the economic zone (zone 3) than in the historical and administrative zones (zone 1 and 2). In the rural area, the proportions of species numbers were significantly higher along the south rural transect (92%) compared to the north rural transect (Wilcoxon signed-rank test, Z = 43, P ˂ 0.016). We also noted a high abundance of vectors in environments characterized by monocultures of Hevea brasiliensis (Hevea) and Manihot esculenta (cassava) (Kruskal-Wallis H-test, H = 25.7, df = 2, P < 0.001). Finally, no mosquito pools were positive for either DENV or CHIKV. CONCLUSION: Aedes albopictus was the dominant vector across the study sites due to its high invasiveness capacity. This presence re-affirms the potential for local transmission of both DENV and CHIKV, as indicated previously by serological surveys conducted in our study area, even though no transmission was detected during the current study. These findings underscore the need for regular arbovirus surveillance in the study region, with the aim of supporting vector control efforts in the event of outbreaks.


Subject(s)
Aedes , Arboviruses , Chikungunya Fever , Chikungunya virus , Dengue Virus , Dengue , Animals , Humans , Female , Dengue Virus/genetics , Mosquito Vectors , Chikungunya virus/genetics
6.
Viruses ; 15(10)2023 10 13.
Article in English | MEDLINE | ID: mdl-37896863

ABSTRACT

Herpes B virus (BV) is a zoonotic virus which can be transmitted from macaques to humans, which is often associated with high mortality rates. Because macaques often exhibit asymptomatic infections, individuals who come into contact with these animals face unexpected risks of BV infections. A serological test is widely performed to investigate BV infections. However, the assay's sensitivity and specificity appeared to be inadequate, and it does not necessarily indicate ongoing viral shedding. Here, we developed LAMP and qPCR assays aiming to detect BVs with a high sensitivity and specificity in various macaque species and validated them using oral swab samples collected from 97 wild cynomolgus macaques living in Thailand. Our LAMP and qPCR assays detected more than 50 and 10 copies of the target sequences per reaction, respectively. The LAMP assay could detect BV within 25 min, indicating its advantages for the rapid detection of BV. Collectively, our findings indicated that both assays developed in this study exhibit advantages and usefulness for BV surveillance and the diagnosis of BV infections in macaques. Furthermore, for the first time, we determined the partial genome sequences of BVs detected in cynomolgus macaques in Thailand. Phylogenetic analysis revealed the species-specific evolution of BV within macaques.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Cercopithecine , Humans , Animals , Herpesvirus 1, Cercopithecine/genetics , Real-Time Polymerase Chain Reaction , Phylogeny , Herpesviridae Infections/diagnosis , Herpesviridae Infections/veterinary , Nucleic Acid Amplification Techniques , Molecular Diagnostic Techniques , Sensitivity and Specificity , Macaca fascicularis
7.
Microorganisms ; 11(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37630606

ABSTRACT

Viral hepatitis remains one of the largest public health concerns worldwide. Especially in Central Africa, information on hepatitis virus infections has been limited, although the prevalence in this region has been reported to be higher than the global average. To reveal the current status of hepatitis B and C virus (HBV and HCV) infections and the genetic diversity of the viruses, we conducted longitudinal surveillance in Gabon. We detected 22 HBV and 9 HCV infections in 2047 patients with febrile illness. Genetic analyses of HBV identified subgenotype A1 for the first time in Gabon and an insertion generating a frameshift to create an X-preC/C fusion protein. We also revealed that most of the detected HCVs belonged to the "Gabon-specific" HCV subtype 4e (HCV-4e), and the entire nucleotide sequence of the HCV-4e polyprotein was determined to establish the first reference sequence. The HCV-4e strains possessed resistance-associated substitutions similar to those of other HCV-4 strains, indicating that the use of direct-acting antiviral therapy may be complex. These results provide a better understanding of the current situation of hepatitis B and C virus infections in Central Africa and will help public health organizations develop effective countermeasures to eliminate chronic viral hepatitis in this region.

8.
Sci Rep ; 13(1): 13105, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37567927

ABSTRACT

Since the emergence of COVID-19, several SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) variants have emerged and spread widely. These variants are produced through replication errors of the viral genome by viral RNA-dependent RNA polymerase (RdRp). Seasonal epidemics of influenza are also known to occur because of new variants of influenza A virus (IAV), which are generated by the introduction of mutations by viral RdRp with low fidelity. Variants with different antigenicities appear because of mutations in envelope glycoproteins. In this study, we calculated and compared the mutation rates in genome replication of IAV and SARS-CoV-2. Average mutation rates per passage were 9.01 × 10-5 and 3.76 × 10-6 substitutions/site for IAV and SARS-CoV-2, respectively. The mutation rate of SARS-CoV-2 was 23.9-fold lower than that of IAV because of the proofreading activity of the SARS-CoV-2 RdRp complex. Our data could be useful in establishing effective countermeasures against COVID-19.


Subject(s)
COVID-19 , Influenza A virus , Humans , SARS-CoV-2/genetics , RNA-Dependent RNA Polymerase/genetics , Virus Replication/genetics , Influenza A virus/genetics , Cell Culture Techniques , RNA, Viral/genetics
9.
Food Chem ; 427: 136755, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37399643

ABSTRACT

Zinc protoporphyrin IX (ZnPP) is the dominant red pigment in nitrate/nitrite-free dry-cured meat products such as Parma ham, and it is considered to be a potential alternative to nitrite/nitrate for reddening dry-cured meat products. Ferroheme and ferriheme dissociated from heme proteins in meat were proposed as substrates to form ZnPP. To elucidate their specific formation mechanism, nitric oxide, carbon monoxide, and azide were used to stable heme in heme proteins. The exogenous hemoglobin derivatives bound with these ligands showed lower heme dissociation compared with exogenous oxyhemoglobin and did not contribute to ZnPP formation. Meanwhile, azide inhibited almost all ZnPP formation by binding to ferriheme, indicating ferriheme dissociation from oxidized heme proteins, predominantly for ZnPP formation. Free ferriheme could not be converted to ZnPP unless it was reduced to ferroheme. Overall, ferriheme dissociated from oxidized heme proteins was the dominant substrate for conversion to ZnPP after re-reduction to ferroheme.


Subject(s)
Hemeproteins , Meat Products , Nitrites , Nitrates , Meat Products/analysis , Azides , Heme , Hemin , Protoporphyrins
10.
Eur J Pharmacol ; 954: 175877, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37356786

ABSTRACT

Idiopathic hypersomnia (IH) is a chronic neurologic disorder with unknown mechanisms that result in long night-time sleep, daytime sleepiness, long non-refreshing naps, and difficult awakening presenting as sleep drunkenness. IH patients are typically diagnosed by shorter sleep latency on multiple sleep latency test (MSLT) along with long sleep time. Only symptomatic drug treatments are currently available for IH and no animal model to study it. Sleepy mice carry a splicing mutation in the Sik3 gene, leading to increased sleep time and sleep need. Here we used a mouse version of MSLT and a decay analysis of wake EEG delta power to validate the Sleepy mutant mouse as an animal model for IH. Sleepy mice had shorter sleep latency in the dark (active) phase than wild-type mice. They also showed lower decay of EEG delta density during wakefulness, possibly reflecting increased sleep inertia. These data indicate that the Sleepy mouse may have partial face validity as a mouse model for idiopathic hypersomnia. We then investigated the effect of orexin-A and the orexin receptor 2-selective agonist YNT-185 on the sleepiness symptoms of the Sleepy mouse. Intracerebroventricular orexin-A promoted wakefulness for 3 h and decreased wake EEG delta density after injection in Sleepy mice and wild-type mice. Moreover, Sleepy mice but not wild-type mice showed a sleep rebound after the orexin-A-induced wakefulness. Intraperitoneal YNT-185 promoted wakefulness for 3 h after injection in Sleepy mice, indicating the potential of using orexin agonists to treat not only orexin deficiency but hypersomnolence of various etiologies.


Subject(s)
Disorders of Excessive Somnolence , Idiopathic Hypersomnia , Mice , Animals , Orexins/pharmacology , Wakefulness , Idiopathic Hypersomnia/diagnosis , Idiopathic Hypersomnia/drug therapy , Sleepiness , Disorders of Excessive Somnolence/diagnosis , Sleep
11.
Cancer Immunol Res ; 11(6): 847-862, 2023 06 02.
Article in English | MEDLINE | ID: mdl-36988477

ABSTRACT

The repertoire of tumor-infiltrating T cells is an emerging method for characterizing effective antitumor T-cell responses. Oligoclonal expansion of the tumor T-cell repertoire has been evaluated; however, their association with antitumor effects is unclear. We demonstrate here that the polyclonal fraction of the tumor-reactive T-cell repertoire, consisting of relatively minor clones, increased in tumor-bearing mice treated with monoclonal anti-programmed death-ligand 1 (PD-L1) or anti-CD4, which correlated with antitumor effects. Meanwhile, the size of the oligoclonal fraction consisting of major clones remained unchanged. Moreover, the polyclonal fraction was enriched in progenitor exhausted T cells, which are essential for a durable antitumor response, and was more dependent on CCR7+ migratory dendritic cells, which are responsible for priming tumor-reactive T cells in the tumor-draining lymph nodes. These results suggest that the expansion of diverse tumor-reactive clones ("clonal spreading") represents characteristics of antitumor T-cell responses induced by anti-CD4 and anti-PD-L1 treatment.


Subject(s)
Neoplasms , T-Lymphocytes , Mice , Animals , Lymphocytes, Tumor-Infiltrating , Clone Cells , Immunity , CD8-Positive T-Lymphocytes , Cell Line, Tumor
12.
PLoS Negl Trop Dis ; 16(12): e0010964, 2022 12.
Article in English | MEDLINE | ID: mdl-36455044

ABSTRACT

BACKGROUND: Despite the development of several methods for diagnosing COVID-19, long-term validation of such methods remains limited. In the early phase of the COVID-19 pandemic, we developed a rapid and sensitive diagnostic method based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) methodology, which is suitable for point-of-care application or for use in resource-limited settings to detect SARS-CoV-2. To assess the applicability of the RT-LAMP assay technique to resource-limited regions, such as rural areas in Africa, and to verify the usability of the method against various SARS-CoV-2 variants, the method was validated using clinical samples collected longitudinally during the pandemic. METHODOLOGY/PRINCIPAL FINDINGS: First, the sensitivity of the RT-LAMP assay for detecting 10 SARS-CoV-2 variants was evaluated using viral RNA samples extracted from cell culture with a portable battery-supported device, resulting in the successful detection of 20-50 copies of the viral genome within 15 min, regardless of the variant. COVID-19 positive samples collected in Gabon between March 2020 and October 2021 were used to evaluate the sensitivity of the assay and to calculate the copy number of the SARS-CoV-2 genome. More than 292 copies of the viral genome were detected with 100% probability within 15 min in almost all tests. CONCLUSIONS: This long-term validation study clearly demonstrated the applicability of the RT-LAMP assay for the clinical diagnosis of COVID-19 in resource-limited settings of Africa, such as rural areas in Gabon. The results show the potential of the assay as a promising COVID-19 diagnostic method, especially in rural and remote regions located far from the official diagnosis facilities in urban or semi-urban areas.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , Reverse Transcription , COVID-19/diagnosis , COVID-19 Testing , Gabon , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , Sensitivity and Specificity
13.
IJID Reg ; 5: 68-71, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36200059

ABSTRACT

Mosquito-borne viral infections are a major concern in endemic areas, such as Africa. Although outbreaks have been reported throughout Africa, only a few surveillance studies have been conducted in Gabon since the outbreaks of dengue virus (DENV) and chikungunya virus (CHIKV) in 2010. Therefore, the current situation is unknown. This study aimed to investigate the presence of arboviruses, especially DENV (serotypes 1-4), CHIKV, and Zika virus (ZIKV), in Gabon, Central Africa. Between 2020 and 2021, we collected 1060 serum samples from febrile patients and screened them against viruses using reverse transcription-quantitative PCR. We detected two DENV serotypes 1 (DENV-1), one CHIKV, and one ZIKV, and subsequently analyzed the genome sequences. To determine the genetic diversity and transmission route of the viruses, phylogenetic analysis was performed using complete or partial genome sequences. The DENV-1 and CHIKV strains detected in this study were closely related to the previous Gabonese strains, whereas the recent ZIKV strain was genetically different from a strain detected in 2007 in Gabon. This study provides new genomic information on DENV-1, CHIKV, and ZIKV that were detected in Gabon and insight into the circulation of the viruses in the country and their introduction from neighboring African countries.

14.
J Gen Virol ; 103(10)2022 10.
Article in English | MEDLINE | ID: mdl-36215163

ABSTRACT

In Africa, several emerging zoonotic viruses have been transmitted from small mammals such as rodents and shrews to humans. Although no clinical cases of small mammal-borne viral diseases have been reported in Central Africa, potential zoonotic viruses have been identified in rodents in the region. Therefore, we hypothesized that there may be unrecognized zoonotic viruses circulating in small mammals in Central Africa. Here, we investigated viruses that have been maintained among wild small mammals in Gabon to understand their potential risks to humans. We identified novel orthonairoviruses in 24.6 % of captured rodents and shrews from their kidney total RNA samples. Phylogenetic analysis revealed that the novel viruses, Lamusara virus (LMSV) and Lamgora virus, were closely related to Erve virus, which was previously identified in shrews of the genus Crocidura and has been suspected to cause neuropathogenic diseases in humans. Moreover, we show that the LMSV ovarian tumour domain protease, one of the virulence determination factors of orthonairoviruses, suppressed interferon signalling in human cells, suggesting the possible human pathogenicity of this virus. Taken together, our study demonstrates the presence of novel orthonairoviruses that may pose unrecognized risks of viral disease transmission in Gabon.


Subject(s)
Rodentia , Shrews , Viruses , Animals , Gabon/epidemiology , Interferons/genetics , Peptide Hydrolases , Phylogeny , RNA , Rodentia/virology , Shrews/virology , Viruses/genetics
16.
PLoS Pathog ; 18(7): e1010689, 2022 07.
Article in English | MEDLINE | ID: mdl-35816544

ABSTRACT

Favipiravir is a nucleoside analogue that inhibits the replication and transcription of a broad spectrum of RNA viruses, including pathogenic arenaviruses. In this study, we isolated a favipiravir-resistant mutant of Junin virus (JUNV), which is the causative agent of Argentine hemorrhagic fever, and analyzed the antiviral mechanism of favipiravir against JUNV. Two amino acid substitutions, N462D in the RNA-dependent RNA polymerase (RdRp) and A168T in the glycoprotein precursor GPC, were identified in the mutant. GPC-A168T substitution enhanced the efficiency of JUNV internalization, which explains the robust replication kinetics of the mutant in the virus growth analysis. Although RdRp-N462D substitution did not affect polymerase activity levels in a minigenome system, comparisons of RdRp error frequencies showed that the virus with RdRp-D462 possessed a significantly higher fidelity. Our next generation sequence (NGS) analysis showed a gradual accumulation of both mutations as we passaged the virus in presence of favipiravir. We also provided experimental evidence for the first time that favipiravir inhibited JUNV through the accumulation of transition mutations, confirming its role as a purine analogue against arenaviruses. Moreover, we showed that treatment with a combination of favipiravir and either ribavirin or remdesivir inhibited JUNV replication in a synergistic manner, blocking the generation of the drug-resistant mutant. Our findings provide new insights for the clinical management and treatment of Argentine hemorrhagic fever.


Subject(s)
Arenavirus , Hemorrhagic Fever, American , Junin virus , Amides , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hemorrhagic Fever, American/drug therapy , Humans , Junin virus/genetics , Pyrazines , RNA-Dependent RNA Polymerase/genetics , Virus Replication
17.
eNeuro ; 9(3)2022.
Article in English | MEDLINE | ID: mdl-35437264

ABSTRACT

Understanding the long-term effects of stress on brain function is crucial for understanding the mechanisms of depression. The BALB/c mouse strain has high susceptibility to stress and is thus an effective model for depression. The long-term effects of repeated social defeat stress (SDS) on BALB/c mice, however, are not clear. Here, we investigated the effects of repeated SDS in male BALB/c mice over the subsequent two weeks. Some defeated mice immediately exhibited social avoidance, whereas anxiety-like behavior was only evident at later periods. Furthermore, defeated mice segregated into two groups based on the level of social avoidance, namely, avoidant and nonavoidant mice. The characteristic of avoidance or nonavoidance in each individual was not fixed over the two weeks. In addition, we developed a semi-automated method for analyzing c-Fos expression in the mouse brain to investigate the effect of repeated SDS on brain activity more than two weeks after the end of the stress exposure. Following social interaction, c-Fos expression was reduced in several brain regions in the defeated mice compared with control mice. The correlation of c-Fos expression among these brain areas, with exception of the medial prefrontal cortex (mPFC) and central amygdala (CeA), was increased in defeated mice, suggesting increased synchrony. Notably, c-Fos expression in the lateral habenula (LHb) was different between mice that exhibited social avoidance from immediately after the repeated SDS and those that exhibited social avoidance only at later periods. These observations provide insight into the long-term effects of social stress on behavior and brain activity.


Subject(s)
Social Defeat , Social Interaction , Animals , Brain/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Proto-Oncogene Proteins c-fos/metabolism , Social Behavior , Stress, Psychological/metabolism
18.
Microorganisms ; 10(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35056548

ABSTRACT

In the initial phase of the novel coronavirus disease (COVID-19) pandemic, a large-scale cluster on the cruise ship Diamond Princess (DP) emerged in Japan. Genetic analysis of the DP strains has provided important information for elucidating the possible transmission process of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on a cruise ship. However, genome-based analyses of SARS-CoV-2 detected in large-scale cruise ship clusters other than the DP cluster have rarely been reported. In the present study, whole-genome sequences of 94 SARS-CoV-2 strains detected in the second large cruise ship cluster, which emerged on the Costa Atlantica (CA) in Japan, were characterized to understand the evolution of the virus in a crowded and confined place. Phylogenetic and haplotype network analysis indicated that the CA strains were derived from a common ancestral strain introduced on the CA cruise ship and spread in a superspreading event-like manner, resulting in several mutations that might have affected viral characteristics, including the P681H substitution in the spike protein. Moreover, there were significant genetic distances between CA strains and other strains isolated in different environments, such as cities under lockdown. These results provide new insights into the unique evolution patterns of SARS-CoV-2 in the CA cruise ship cluster.

19.
Neurosci Res ; 177: 16-24, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34856199

ABSTRACT

Sleep pressure, the driving force of the homeostatic sleep regulation, is accumulated during wakefulness and dissipated during sleep. Sleep deprivation (SD) has been used as a method to acutely increase animal's sleep pressure for investigating the molecular changes under high sleep pressure. However, SD induces changes not only reflecting increased sleep pressure but also inevitable stresses and prolonged wake state itself. The Sik3Sleepy mutant mice (Sleepy) exhibit constitutively high sleep pressure despite sleeping longer, and have been useful as a model of increased sleep pressure. Here we conducted a cross-comparison of brain metabolomic profiles between SD versus ad lib slept mice, as well as Sleepy mutant versus littermate wild-type mice. Targeted metabolome analyses of whole brains quantified 203 metabolites in total, of which 43 metabolites showed significant changes in SD, whereas three did in Sleepy mutant mice. The large difference in the number of differential metabolites highlighted limitations of SD as methodology. The cross-comparison revealed that a decrease in betaine and an increase in imidazole dipeptides are associated with high sleep pressure in both models. These metabolites may be novel markers of sleep pressure at the whole-brain level. Furthermore, we found that intracerebroventricular injection of imidazole dipeptides increased subsequent NREM sleep time, suggesting the possibility that imidazole dipeptides may participate in the regulation of sleep in mice.


Subject(s)
Sleep , Wakefulness , Animals , Brain/metabolism , Dipeptides/metabolism , Electroencephalography , Mice , Protein Serine-Threonine Kinases , Sleep/physiology , Sleep Deprivation , Wakefulness/physiology
20.
Front Neurosci ; 15: 739236, 2021.
Article in English | MEDLINE | ID: mdl-34621154

ABSTRACT

There are various sex differences in sleep/wake behaviors in mice. However, it is unclear whether there are sex differences in sleep homeostasis and arousal responses and whether gonadal hormones are involved in these sex differences. Here, we examined sleep/wake behaviors under baseline condition, after sleep deprivation by gentle handling, and arousal responses to repeated cage changes in male and female C57BL/6 mice that are hormonally intact, gonadectomized, or gonadectomized with hormone supplementation. Compared to males, females had longer wake time, shorter non-rapid eye movement sleep (NREMS) time, and longer rapid eye movement sleep (REMS) episodes. After sleep deprivation, males showed an increase in NREMS delta power, NREMS time, and REMS time, but females showed a smaller increase. Females and males showed similar arousal responses. Gonadectomy had only a modest effect on homeostatic sleep regulation in males but enhanced it in females. Gonadectomy weakened arousal response in males and females. With hormone replacement, baseline sleep in gonadectomized females was similar to that of intact females, and baseline sleep in gonadectomized males was close to that of intact males. Gonadal hormone supplementation restored arousal response in males but not in females. These results indicate that male and female mice differ in their baseline sleep-wake behavior, homeostatic sleep regulation, and arousal responses to external stimuli, which are differentially affected by reproductive hormones.

SELECTION OF CITATIONS
SEARCH DETAIL
...