Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Sci ; 153(4): 215-220, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973219

ABSTRACT

OBJECTIVE: Imeglimin is a novel antidiabetic drug structurally related to metformin. Metformin has been shown to modulate the circadian clock in rat fibroblasts. Accordingly, in the present study, we aimed to determine whether imeglimin can impact the circadian oscillator in mouse embryonic fibroblasts (MEFs). METHODS: MEFs carrying a Bmal1-Emerald luciferase (Bmal1-ELuc) reporter were exposed to imeglimin (0.1 or 1 mM), metformin (0.1 or 1 mM), a nicotinamide phosphoribosyltransferase inhibitor FK866, and/or vehicle. Subsequently, Bmal1-ELuc expression and clock gene mRNA expression levels were measured at 10-min intervals for 55 h and 4-h intervals for 32 h, respectively. RESULTS: Imeglimin significantly prolonged the period (from 26.3 to 30.0 h at 0.1 mM) and dose-dependently increased the amplitude (9.6-fold at 1 mM) of the Bmal1-ELuc expression rhythm; however, metformin exhibited minimal effects on these parameters. Moreover, imeglimin notably impacted the rhythmic mRNA expression of clock genes (Bmal1, Per1, and Cry1). The concurrent addition of FK866 partly inhibited the effects of imeglimin on both Bmal1-ELuc expression and clock gene mRNA expression. CONCLUSION: Collectively, these results reveal that imeglimin profoundly affects the circadian clock in MEFs. Further studies are needed to evaluate whether imeglimin treatment could exert similar effects in vivo.


Subject(s)
Circadian Clocks , Metformin , Rats , Mice , Animals , Circadian Clocks/genetics , Circadian Rhythm , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Fibroblasts/metabolism , RNA, Messenger/metabolism , Metformin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...