Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Exp Parasitol ; 251: 108567, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37308002

ABSTRACT

The present study investigated the role of heat shock protein 90 (HSP90) in the proliferation and survival of Babesia gibsoni in vitro. To detect the effect on the entry of B. gibsoni into host erythrocytes, the parasite was incubated with an antibody against B. gibsoni HSP90 (BgHSP90) for 24 h. The results of this experiment demonstrated that both the incorporation of [3H]hypoxanthine into the nucleic acids of B. gibsoni and the number of parasites were not altered, indicating that an anti-BgHSP90 antibody did not directly inhibit the entry of the parasite into erythrocytes. Moreover, two HSP90 inhibitors, geldanamycin (GA) and tanespimycin (17-AAG), were used to evaluate the function of BgHSP90. GA and 17-AAG decreased both the incorporation of [3H]hypoxanthine and the number of infected erythrocytes, suggesting that BgHSP90 plays important roles in DNA synthesis and the proliferation of B. gibsoni. The effect of 17-AAG on the parasites was weaker than that of GA. Additionally, the effect of GA on the survival and superoxide generation of canine neutrophils was assessed. The survival of canine neutrophils was not affected. The superoxide generation was strongly suppressed by GA. This result indicated that GA inhibited the function of canine neutrophils. Additional studies are necessary to elucidate the role of BgHSP90 in the proliferation of the parasite.


Subject(s)
Babesia , Babesiosis , Dog Diseases , Animals , Dogs , Superoxides/metabolism , HSP90 Heat-Shock Proteins/metabolism , Hypoxanthines/metabolism , Hypoxanthines/pharmacology , Cell Proliferation , Dog Diseases/parasitology , Babesiosis/parasitology
4.
Exp Parasitol ; 221: 108050, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33307095

ABSTRACT

Heat shock protein 90 (HSP90) is a molecular chaperon and an essential component for stage differentiation and intracellular growth inside the host cells of many protozoans. HSP90 of Babesia gibsoni (BgHSP90) was suggested to function in the development of diminazene aceturate (DA)-resistance. Therefore, we examined the expression level of BgHSP90 in a DA-resistant B. gibsoni isolate. Transcription of the BgHSP90 gene in the DA-resistant isolate and wild-type B. gibsoni was assessed by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). As a result, the copy number and relative amount of BgHSP90 transcripts in the DA-resistant isolate were significantly lower than those in the wild-type. Moreover, a rabbit anti-recombinant BgHSP90 antibody was developed, and the protein synthesis of BgHSP90 in the DA-resistant isolate was compared with that in the wild-type by Western blot analysis and indirect fluorescence assay. There was significantly less BgHSP90 protein than in the wild-type. Additionally, the relative intensity of BgHSP70 in DA-resistant isolate was also lower than that in the wild-type. This suggested that the expression of BgHSP90 and BgHSP70 in the DA-resistant B. gibsoni isolate was suppressed and that the reduced amount of BgHSP90 and BgHSP70 might cause the weak proliferation of the DA-resistant isolate. Further studies are necessary to elucidate the function of BgHSP90.


Subject(s)
Antiprotozoal Agents/pharmacology , Babesia/drug effects , Babesia/metabolism , Diminazene/analogs & derivatives , HSP90 Heat-Shock Proteins/metabolism , Animals , Blotting, Western , Diminazene/pharmacology , Dogs , Drug Resistance , Electrophoresis, Polyacrylamide Gel , Erythrocytes/chemistry , Erythrocytes/parasitology , Fluorescent Antibody Technique, Indirect , Immunoblotting , Potassium/metabolism , Rabbits , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...