Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 13: 968468, 2022.
Article in English | MEDLINE | ID: mdl-36060676

ABSTRACT

An important trait of Pacific bluefin tuna (PBT) is their ability to maintain their body temperature above the ambient temperature, which allows them to occupy a wider ecological niche. However, the size at which this ability in nature develops is unclear. Therefore, this study aimed to clarify this point by monitoring the body temperature and the surrounding ambient temperature as the fish grew. PBT with fork lengths (FLs) ranging from 19.5 to 28.0 cm were implanted with archival electronic tags and released into the ocean. Data from 41 fish were obtained (recorded body and water temperatures, light level, and swimming depth (pressure) at 30-s intervals) and analyzed to elucidate the development of the ability of PBT to maintain a high body temperature. Body temperature of a PBT (< FL of ca. 40 cm) decreased in response to a vertical movement down to cooler depths, but higher body temperatures were maintained as the fish grew. The body temperature was then continuously maintained above ambient temperatures and fluctuated independently when fish attained more than 40 cm FL. Estimation of the whole-body heat-transfer coefficient and heat-production rate indicated that the latter decreased slowly with growth, while the former decreased by one order of magnitude when tuna reached 52 cm FL. Additionally, in the daytime, the whole-body heat-transfer coefficient was significantly higher than that at nighttime. Unlike other fishes including other Thunnus species, inhabiting tropical/subtropical waters, PBT rapidly acquire higher thermo-conservation ability when young, allowing capture of high-quality prey abundant in temperate waters to support high growth rates during early life.

2.
J Exp Biol ; 222(Pt 3)2019 02 07.
Article in English | MEDLINE | ID: mdl-30630968

ABSTRACT

Ectotherms adjust their thermal performance to various thermal ranges by altering their metabolic rates. These metabolic adjustments involve plastic and/or genetic traits and pathways depend on species-specific ecological contexts. Chum salmon (Oncorhynchus keta) are ecologically unique among the Pacific salmonids as early-run and late-run populations are commonly observed in every part of their range. In the Sanriku coastal area, Japan, early-run adults experience high water temperatures (12-24°C) during their migration, compared with those of the late-run adults (4-15°C), suggesting that the two populations might have different thermal performance. Here, we found population-specific differences in the thermal sensitivities of metabolic rates [resting metabolic rate, RMR, and maximum (aerobic) metabolic rate, MMR] and critical temperature maxima. Using these parameters, we estimated thermal performance curves of absolute aerobic scope (AAS). The populations had different thermal performance curves of AAS, and in both populations high values of AAS were maintained throughout the range of ecologically relevant temperatures. However, the populations did not vary substantially in the peak (AAS at optimal temperature, ToptAAS) or breadth (width of sub-optimal temperature range) of the performance curves. The AAS curve of early-run fish was shifted approximately 3°C higher than that of late-run fish. Furthermore, when the data for RMR and MMR were aligned to the thermal differences from ToptAAS, it became clear that the populations did not differ in the temperature dependence of their metabolic traits. Our results indicate that chum salmon thermally accommodate through compensatory alterations in metabolic rates. Our results imply that metabolic plasticity and/or the effect of genetic variance on plasticity might play a pivotal role in their thermal accommodation.


Subject(s)
Animal Migration , Basal Metabolism , Oncorhynchus keta/physiology , Temperature , Animals , Japan , Male , Rivers , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...