Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36500566

ABSTRACT

Spider dragline silk has unique characteristics of strength and extensibility, including supercontraction. When we use it as a biomaterial or material for textiles, it is important to suppress the effect of water on the fiber by as much as possible in order to maintain dimensional stability. In order to produce spider silk with a highly hydrophobic character, based on the sequence of ADF-3 silk, we produced recombinant silk (RSSP(VLI)) where all QQ sequences were replaced by VL, while single Q was replaced by I. The artificial RSSP(VLI) fiber was prepared using formic acid as the spinning solvent and methanol as the coagulant solvent. The dimensional stability and water absorption experiments of the fiber were performed for eight kinds of silk fiber. RSSP(VLI) fiber showed high dimensional stability, which is suitable for textiles. A remarkable decrease in the motion of the fiber in water was made evident by 13C solid-state NMR. This study using 13C solid-state NMR is the first trial to put spider silk to practical use and provide information regarding the molecular design of new recombinant spider silk materials with high dimensional stability in water, allowing recombinant spider silk proteins to be used in next-generation biomaterials and materials for textiles.


Subject(s)
Silk , Water , Silk/chemistry , Water/chemistry , Magnetic Resonance Spectroscopy/methods , Recombinant Proteins/chemistry , Biocompatible Materials/chemistry , Arthropod Proteins
2.
J Am Chem Soc ; 135(2): 602-5, 2013 Jan 16.
Article in English | MEDLINE | ID: mdl-23256898

ABSTRACT

A novel, highly selective photocyclic aromatization (SCAT) of π-conjugated polymers from phenylacetylene having two hydroxyl groups to exclusively yield a 1,3,5-trisubstituted benzene derivative was developed, and its success was confirmed by (1)H NMR, GPC, and TOF-MS. The SCAT reaction has many unique characteristics. (1) It is a quantitative reaction: it gave only the corresponding cyclic trimer, i.e., a 1,3,5-trisubstituted benzene derivative, quantitatively (100%). No byproducts were produced under the best conditions. (2) It is an intramolecular reaction: it occurred between three adjacent monomer units in one macromolecule. (3) It is a stereospecific and topochemical or template reaction: the reactivity strongly depended on the configuration and conformation of the starting polymer substrates. (4) It is a photoreaction: high selectivity (100%) was observed only by the use of visible light irradiation, not by heating. (5) It is a solid-state reaction: high selectivity (100%) was observed only in the solid state, not in solution. In addition, (6) the resulting cyclic trimers could form a self-supporting membrane, despite their low molecular weights. This new approach resulted in a new class of supramolecular polymers consisting of a 1,3,5-trisubstituted benzene derivative, numbers of which were linearly linked by hydrogen bonds and stacked benzene derivatives. Since SCAT has such high selectivities and is useful for the preparation of a self-supporting supramolecular polymer membrane, many applications can be expected.

3.
Chem Commun (Camb) ; 48(39): 4761-3, 2012 May 16.
Article in English | MEDLINE | ID: mdl-22472961

ABSTRACT

Pseudo helix-sense-selective polymerisation of a wide range of achiral substituted acetylenes having dynamic covalent bonds has been realised to yield static one-handed helical polymers without any other chiral moieties.

4.
Molecules ; 17(1): 433-51, 2012 Jan 04.
Article in English | MEDLINE | ID: mdl-22217556

ABSTRACT

A soluble and stable one-handed helical poly(substituted phenylacetylene) without the coexistence of any other chiral moieties was successfully synthesized by asymmetric-induced polymerization of a chiral monomer followed by two-step polymer reactions in membrane state: (1) removing the chiral groups (desubstitution); and (2) introduction of achiral long alkyl groups at the same position as the desubstitution to enhance the solubility of the resulting one-handed helical polymer (resubstitution). The starting chiral monomer should have four characteristic substituents: (i) a chiral group bonded to an easily hydrolyzed spacer group; (ii) two hydroxyl groups; (iii) a long rigid hydrophobic spacer between the chiral group and the polymerizing group; (iv) a long achiral group near the chiral group. As spacer group a carbonate ester was selected. The two hydroxyl groups formed intramolecular hydrogen bonds stabilizing a one-handed helical structure in solution before and after the two-step polymer reactions in membrane state. The rigid long hydrophobic spacer, a phenylethynylphenyl group, enhanced the solubility of the starting polymer, and realized effective chiral induction from the chiral side groups to the main chain in the asymmetric-induced polymerization. The long alkyl group near the chiral group avoided shrinkage of the membrane and kept the reactivity of resubstitution in membrane state after removing the chiral groups. The g value (g = ([θ]/3,300)/ε) for the CD signal assigned to the main chain in the obtained final polymer was almost the same as that of the starting polymer in spite of the absence of any other chiral moieties. Moreover, since the one-handed helical structure was maintained by the intramolecular hydrogen bonds in a solution, direct observation of the one-handed helicity of the final homopolymer has been realized in CD for the solution for the first time.


Subject(s)
Acetylene/analogs & derivatives , Membranes, Artificial , Polymerization , Acetylene/chemical synthesis , Acetylene/chemistry , Acetylene/isolation & purification , Circular Dichroism , Hydrogen Bonding , Molecular Conformation , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...