Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inflammopharmacology ; 31(6): 3203-3216, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37792093

ABSTRACT

BACKGROUND: Chaerophyllum macropodum Boiss. (popularly known as "Jafari farangi kohestani") is a predominant medicinal plant traditionally utilized in the treatments of peritoneal inflammation and headache in Persian folk medicine. Here, we have revealed the anti-neuropathic and anti-nociceptive activities of C. macropodum leaves essential oil (CMEO) in addition to uncovering the possible mechanisms of action. METHODS: Formalin-induced paw licking model was used to assess the anti-nociceptive activity of CMEO and its major constituent, terpinolene (TP). The anti-nociceptive activity of these compounds was determined by investigating the roles of various non-opioid and NO-cGMP-K+ channels. Additionally, the anti-neuropathic potential of CMEO and TP was determined using cervical spinal cord contusion/CCS technique. RESULTS: The CMEO exerted significant anti-nociceptive activity with a remarkable activity seen in the second phase of formalin-induced paw licking model and this activity were remarkably reversed by pre-treatment of naloxone (an opioid antagonist). Pretreatment with several types of NO-cGMP-potassium channel pathway meaningfully reversed the anti-nociceptive potential of CMEO in phase II of formalin model. Moreover, pre-treatment with several antagonists of non-opioid receptors revealed that only the antagonist of TRPV-1, serotonin type 3, 5-HT2, α2 adrenergic, and CB1 receptors (capsaicin, ondansetron, ketanserin, yohimbine, and SR141716A, respectively) reversed CMEO anti-nociception. CMEO and TP also remarkably reversed hyperalgesia and mechanical allodynia in the CCS technique. CONCLUSION: The CMEO exerts anti-nociceptive and anti-neuropathic activities via the modulation of NO-cGMP potassium channel pathway, opioid as well as several non-opioid receptor activity. TP might partly contribute to the observed activities of CMEO.


Subject(s)
Neuralgia , Oils, Volatile , Humans , Analgesics/pharmacology , Plant Extracts/pharmacology , Oils, Volatile/pharmacology , Neuralgia/drug therapy , Hyperalgesia/drug therapy , Analgesics, Opioid , Formaldehyde , Potassium Channels
2.
J Ethnopharmacol ; 298: 115638, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36007719

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Descurainia sophia (L.)(Brassicaceae), popularly known as "Khaksheer", is a native species widely distributed in Iran. The seeds and essential oil has been used in local traditional medicine (Persian folk ethnomedicine) to treat fever, inflammation, back pain, and headache. AIM OF THE STUDY: To investigate in vitro anti-nociceptive and antineuropathic activities of Descurainia sophia seeds essential oil (DSEO) in rats and to determine the possible mechanism(s) involved. MATERIALS AND METHODS: The antinociceptive activity of DSEO or Linolenic acid (LA) was evaluated using the formalin induced paw licking test followed by determination on the role of NO-cGMP-K+ channel pathway as well as a number of non-opioid receptor systems (vanilloid, dopamine, cannabinoid, serotonin, peroxisome proliferator activated, and adrenergic receptors) in the modulation of DSEO-induced antinociceptive activity. Additionally, the cervical spinal cord contusion (CCS) model was used to study antineuropathic potential of DSEO or LA. RESULTS: DSEO exerted significant (p < 0.05) antinociceptive activity in formalin test (both phases) and altered mechanical allodynia and hyperalgesia observed in the CCS model. Pretreatment with glibenclamide, Nω-nitro-L-arginine methyl ester, tranilast, methylene blue, SCH23390, SR141716A and SR144528 restored DSEO-induced antinociceptive activity observed in the formalin test. Furthermore, LA also reduced nociceptive responses induced in the formalin and CCS models. CONCLUSION: DSEO inhibits inflammatory mediated nociceptive response partly via the modulation of NO-cGMP-K+ channels pathway well as the activation of vanilloid, dopamine, and cannabinoid receptors, and exerts antineuropathic activity possibly via the modulation of inflammatory mediated activity. Thus, these findings confirm the Persian ethno-medicine claim on the efficacy of D. Sophia.


Subject(s)
Oils, Volatile , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Cyclic GMP/metabolism , Dopamine , Formaldehyde , Hyperalgesia/drug therapy , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Pain Measurement , Rats
3.
J Ethnopharmacol ; 283: 114695, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34597655

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Thymus persicus (Roniger ex Reach F.) is an Iranian endemic medicinal plant of which essential oil and various products have numerous food and pharmaceutical applications (headache and fever treatments). OBJECTIVE: This modern research included Swiss mice to investigate the anti-nociceptive and anti-neuropathic effects of Thymus persicus aerial parts essential oil (TPEO). MATERIALS AND METHODS: To determine TPEO's anti-nociceptive function in the formalin-induced paw licking (FML), researchers looked at the L-arginine/NO/cGMP/KATP channel signaling pathway as well as multiple receptors as with serotonin, morphine, dopamine, and peroxisome proliferator-activated receptors. The CVC or cervical spinal cord contusion exemplar has also been used to induce neuropathic pain. RESULTS: TPEO (50, 100, and 150 mg/kg) relative to control mice in the phase-II of FML provided strong antinociception (p < 0.05, p < 0.01, p < 0.001, respectively). Furthermore, methylene blue, glibenclamide, Nω-nitro-L-arginine methyl ester, naloxonazine, nor-binaltorphimine, prazosin, yohimbine, and ondansetron pre-treating restored the TPEO anti-nociceptive activity in the FML (phase-II) exemplar (p < 0.05). In phase-II of the FML exemplar, carvacrol (one of the active components of TPEO) also greatly reduced pain (p < 0.001). Likewise, in CVC mice, TPEO altered mechanical allodynia and hyperalgesia. CONCLUSION: It was attained magnificently that TPEO could exerts antinociceptive effects through the involvement of L-arginine/NO/cGMP/KATP signaling pathway, adrenergic, opioid, and serotonin receptors. Moreover, it is demonstrate that anti-neuropathic activity of TPEO may be mediated by inflammatory function.


Subject(s)
Analgesics/therapeutic use , Neuralgia/drug therapy , Plant Extracts/therapeutic use , Thymus Plant/chemistry , Administration, Oral , Analgesics/chemistry , Animals , Male , Mice , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...