Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Protoc ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565959

ABSTRACT

Methods for analyzing the full complement of a biomolecule type, e.g., proteomics or metabolomics, generate large amounts of complex data. The software tools used to analyze omics data have reshaped the landscape of modern biology and become an essential component of biomedical research. These tools are themselves quite complex and often require the installation of other supporting software, libraries and/or databases. A researcher may also be using multiple different tools that require different versions of the same supporting materials. The increasing dependence of biomedical scientists on these powerful tools creates a need for easier installation and greater usability. Packaging and containerization are different approaches to satisfy this need by delivering omics tools already wrapped in additional software that makes the tools easier to install and use. In this systematic review, we describe and compare the features of prominent packaging and containerization platforms. We outline the challenges, advantages and limitations of each approach and some of the most widely used platforms from the perspectives of users, software developers and system administrators. We also propose principles to make the distribution of omics software more sustainable and robust to increase the reproducibility of biomedical and life science research.

2.
ACS Bio Med Chem Au ; 4(1): 37-52, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38404747

ABSTRACT

The tragic COVID-19 pandemic, which has seen a total of 655 million cases worldwide and a death toll of over 6.6 million seems finally tailing off. Even so, new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to arise, the severity of which cannot be predicted in advance. This is concerning for the maintenance and stability of public health, since immune evasion and increased transmissibility may arise. Therefore, it is crucial to continue monitoring antibody responses to SARS-CoV-2 in the general population. As a complement to polymerase chain reaction tests, multiplex immunoassays are elegant tools that use individual protein or peptide antigens simultaneously to provide a high level of sensitivity and specificity. To further improve these aspects of SARS-CoV-2 antibody detection, as well as accuracy, we have developed an advanced serological peptide-based multiplex assay using antigen-fused peptide epitopes derived from both the spike and the nucleocapsid proteins. The significance of the epitopes selected for antibody detection has been verified by in silico molecular docking simulations between the peptide epitopes and reported SARS-CoV-2 antibodies. Peptides can be more easily and quickly modified and synthesized than full length proteins and can, therefore, be used in a more cost-effective manner. Three different fusion-epitope peptides (FEPs) were synthesized and tested by enzyme-linked immunosorbent assay (ELISA). A total of 145 blood serum samples were used, compromising 110 COVID-19 serum samples from COVID-19 patients and 35 negative control serum samples taken from COVID-19-free individuals before the outbreak. Interestingly, our data demonstrate that the sensitivity, specificity, and accuracy of the results for the FEP antigens are higher than for single peptide epitopes or mixtures of single peptide epitopes. Our FEP concept can be applied to different multiplex immunoassays testing not only for SARS-CoV-2 but also for various other pathogens. A significantly improved peptide-based serological assay may support the development of commercial point-of-care tests, such as lateral-flow-assays.

3.
bioRxiv ; 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37609176

ABSTRACT

Data-driven computational analysis is becoming increasingly important in biomedical research, as the amount of data being generated continues to grow. However, the lack of practices of sharing research outputs, such as data, source code and methods, affects transparency and reproducibility of studies, which are critical to the advancement of science. Many published studies are not reproducible due to insufficient documentation, code, and data being shared. We conducted a comprehensive analysis of 453 manuscripts published between 2016-2021 and found that 50.1% of them fail to share the analytical code. Even among those that did disclose their code, a vast majority failed to offer additional research outputs, such as data. Furthermore, only one in ten papers organized their code in a structured and reproducible manner. We discovered a significant association between the presence of code availability statements and increased code availability (p=2.71×10-9). Additionally, a greater proportion of studies conducting secondary analyses were inclined to share their code compared to those conducting primary analyses (p=1.15*10-07). In light of our findings, we propose raising awareness of code sharing practices and taking immediate steps to enhance code availability to improve reproducibility in biomedical research. By increasing transparency and reproducibility, we can promote scientific rigor, encourage collaboration, and accelerate scientific discoveries. We must prioritize open science practices, including sharing code, data, and other research products, to ensure that biomedical research can be replicated and built upon by others in the scientific community.

4.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37291798

ABSTRACT

The ability to identify and track T-cell receptor (TCR) sequences from patient samples is becoming central to the field of cancer research and immunotherapy. Tracking genetically engineered T cells expressing TCRs that target specific tumor antigens is important to determine the persistence of these cells and quantify tumor responses. The available high-throughput method to profile TCR repertoires is generally referred to as TCR sequencing (TCR-Seq). However, the available TCR-Seq data are limited compared with RNA sequencing (RNA-Seq). In this paper, we have benchmarked the ability of RNA-Seq-based methods to profile TCR repertoires by examining 19 bulk RNA-Seq samples across 4 cancer cohorts including both T-cell-rich and T-cell-poor tissue types. We have performed a comprehensive evaluation of the existing RNA-Seq-based repertoire profiling methods using targeted TCR-Seq as the gold standard. We also highlighted scenarios under which the RNA-Seq approach is suitable and can provide comparable accuracy to the TCR-Seq approach. Our results show that RNA-Seq-based methods are able to effectively capture the clonotypes and estimate the diversity of TCR repertoires, as well as provide relative frequencies of clonotypes in T-cell-rich tissues and low-diversity repertoires. However, RNA-Seq-based TCR profiling methods have limited power in T-cell-poor tissues, especially in highly diverse repertoires of T-cell-poor tissues. The results of our benchmarking provide an additional appealing argument to incorporate RNA-Seq into the immune repertoire screening of cancer patients as it offers broader knowledge into the transcriptomic changes that exceed the limited information provided by TCR-Seq.


Subject(s)
Benchmarking , Neoplasms , Humans , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes , Neoplasms/genetics , Sequence Analysis, RNA
5.
Curr Oncol ; 29(10): 7558-7568, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36290872

ABSTRACT

The clinical behaviors, prognosis, and appropriate treatments of papillary tumors of the pineal region (PTPR) are not fully defined due to the rarity of these tumors. At diagnosis, PTPR may present with clinical symptoms, including headache with obstructive hydrocephalus, diplopia, vomiting, and lethargy, as well as neurological signs, including Argyll Robertson pupils and Parinaud's syndrome due to compression of the dorsal midbrain, specifically the periaqueductal region with horizontal nystagmus. Radiological assessment of pineal region lesions is challenging, with a wide range of potential differential diagnoses. PTPR typically presents as a heterogeneous, well-circumscribed mass in the pineal region, which might contain cystic areas, calcifications, hemorrhages, or protein accumulations. Here, we report three female pediatric patients with PTPR treated in King Fahad Medical City (KFMC) in Saudi Arabia. Histological and immunohistochemical diagnosis was confirmed by analysis of genome-wide DNA methylation profiles. This case series expands on the available reports on the clinical presentations of PTPR and provides important information on the responses to different treatment modalities.


Subject(s)
Brain Neoplasms , Pineal Gland , Pinealoma , Humans , Female , Child , Pinealoma/diagnostic imaging , Pinealoma/therapy , Brain Neoplasms/diagnosis , Pineal Gland/diagnostic imaging , Pineal Gland/metabolism , Pineal Gland/pathology
7.
J Epidemiol Glob Health ; 12(1): 85-91, 2022 03.
Article in English | MEDLINE | ID: mdl-34978705

ABSTRACT

BACKGROUND: Disease severity among patients infected with SARS-CoV-2 varies remarkably. Preliminary studies reported that the ABO blood group system confers differential viral susceptibility and disease severity caused by SARS-CoV-2. Thus, differences in ABO blood group phenotypes may partly explain the observed heterogeneity in COVID-19 severity patterns, and could help identify individuals at increased risk. Herein, we explored the association between ABO blood group phenotypes and COVID-19 susceptibility and severity in a Saudi Arabian cohort. METHODS: In this retrospective cohort study, we performed ABO typing on a total of 373 Saudi patients infected with SARS-CoV-2 and conducted association analysis between ABO blood group phenotype and COVID-19 infection severity. We then performed gender-stratified analysis by dividing the participating patients into two groups by gender, and classified them according to age. RESULTS: The frequencies of blood group phenotypes A, B, AB and O were 27.3, 23.6, 5.4 and 43.7%, respectively. We found that blood group phenotype O was associated with a lower risk of testing positive for COVID-19 infection (OR 0.76 95% CI 0.62-0.95, p = 0.0113), while blood group phenotype B was associated with higher odds of testing positive (OR 1.51 95% CI 1.17-1.93, p = 0.0009). However, blood group phenotype B was associated with increased risk in the mild and moderate group but not the severe COVID-19 infection group. Blood group phenotype O was protective in all severity groups. CONCLUSION: Our findings provide evidence that blood group phenotype B is a risk for COVID-19 disease while blood group phenotype O is protective from COVID-19 infection. However, further studies are necessary to validate these associations in a larger sample size and among individuals of different ethnic groups.


Subject(s)
ABO Blood-Group System , COVID-19 , ABO Blood-Group System/genetics , COVID-19/epidemiology , Humans , Phenotype , Retrospective Studies , SARS-CoV-2 , Saudi Arabia/epidemiology , Severity of Illness Index
8.
Clin Immunol ; 234: 108911, 2022 01.
Article in English | MEDLINE | ID: mdl-34929414

ABSTRACT

BACKGROUND: Natural killer (NK) cells play an essential role against viruses. NK cells express killer cell immunoglobulin-like receptors (KIRs) which regulate their activity and function. The polymorphisms in KIR haplotypes confer differential viral susceptibility and disease severity caused by infections. We investigated the association between KIR genes and COVID-19 disease severity. METHODS: 424 COVID-19 positive patients were divided according to their disease severity into mild, moderate and severe. KIR genes were genotyped using next generation sequencing (NGS). Association between KIR genes and COVID-19 disease severity was conducted and significant correlations were reported. RESULTS: In the COVID-19 patients, KIR Bx genotype was more common than AA genotype. The Bx genotype was found more frequently in patients with mild disease, while in severe disease the AA genotype was more common than the Bx genotype. The KIR2DS4 gene carried the highest risk for severe COVID-19 infection (OR 8.48, pc= 0.0084) followed by KIR3DL1 (OR 7.61, pc= 0.0192). CONCLUSIONS: Our findings suggest that KIR2DS4 and KIR3DL1 genes carry risk for severe COVID-19 disease.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Genetic/genetics , Receptors, KIR/genetics , Adult , COVID-19/metabolism , Female , Gene Frequency/genetics , Genotype , Humans , Killer Cells, Natural/metabolism , Male , Middle Aged , SARS-CoV-2/pathogenicity
10.
ArXiv ; 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33948451

ABSTRACT

More than any other infectious disease epidemic, the COVID-19 pandemic has been characterized by the generation of large volumes of viral genomic data at an incredible pace due to recent advances in high-throughput sequencing technologies, the rapid global spread of SARS-CoV-2, and its persistent threat to public health. However, distinguishing the most epidemiologically relevant information encoded in these vast amounts of data requires substantial effort across the research and public health communities. Studies of SARS-CoV-2 genomes have been critical in tracking the spread of variants and understanding its epidemic dynamics, and may prove crucial for controlling future epidemics and alleviating significant public health burdens. Together, genomic data and bioinformatics methods enable broad-scale investigations of the spread of SARS-CoV-2 at the local, national, and global scales and allow researchers the ability to efficiently track the emergence of novel variants, reconstruct epidemic dynamics, and provide important insights into drug and vaccine development and disease control. Here, we discuss the tremendous opportunities that genomics offers to unlock the effective use of SARS-CoV-2 genomic data for efficient public health surveillance and guiding timely responses to COVID-19.

11.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34043590

ABSTRACT

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,864 COVID-19 cases (713 with severe and 1,151 with mild disease) and 15,033 ancestry-matched population controls across 4 independent COVID-19 biobanks. We tested whether rare pLOF variants in these 13 genes were associated with severe COVID-19. We identified only 1 rare pLOF mutation across these genes among 713 cases with severe COVID-19 and observed no enrichment of pLOFs in severe cases compared to population controls or mild COVID-19 cases. We found no evidence of association of rare LOF variants in the 13 candidate genes with severe COVID-19 outcomes.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Interferon Type I/genetics , Interferon Type I/immunology , Loss of Function Mutation , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Interferon Regulatory Factor-7/genetics , Male , Middle Aged , Severity of Illness Index , Toll-Like Receptor 3/genetics , Exome Sequencing , Whole Genome Sequencing , Young Adult
13.
medRxiv ; 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33398295

ABSTRACT

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,934 COVID-19 cases (713 with severe and 1,221 with mild disease) and 15,251 ancestry-matched population controls across four independent COVID-19 biobanks. We then tested if rare pLOF variants in these 13 genes were associated with severe COVID-19. We identified only one rare pLOF mutation across these genes amongst 713 cases with severe COVID-19 and observed no enrichment of pLOFs in severe cases compared to population controls or mild COVID-19 cases. We find no evidence of association of rare loss-of-function variants in the proposed 13 candidate genes with severe COVID-19 outcomes.

14.
Front Biosci (Landmark Ed) ; 24(5): 870-889, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30844719

ABSTRACT

Congenital and genetic disorders cause many diseases in Arab countries due to large family sizes and high levels of inbreeding. Saudi Arabia (SA) has the highest consanguinity rates among Middle Eastern countries (~60% of all marriages) and is burdened by the highest number of genetic diseases. Genetic diseases can be life-threatening, often manifesting early in life. Approximately 8% of births in SA are affected, and more common genetic diseases, such as metabolic disease and cancer, manifest later in life in up to 20% of the population. This represents a massive healthcare burden to SA hospitals. The number of genetic disorders in the human population ranges from 7000 to 8000, over 3000 of which are caused by unknown mutations. In 2013, SA initiated the Saudi Human Genome Program (SHGP), which aims to sequence over 100,000 human genomes, with the goal of identifying strategies to discover, prevent, diagnose and treat genetic disorders through precision therapy. High-technology genomics and informatic-based centers that exploit next-generation sequencing (NGS) have now identified mutations underlying many unexplained diseases.


Subject(s)
Genome, Human , Precision Medicine/methods , Sequence Analysis, DNA/methods , Autoimmune Diseases/genetics , Central Nervous System Diseases/genetics , Congenital Abnormalities/genetics , Consanguinity , Female , Genomics , Humans , Intellectual Disability/genetics , Kidney Diseases/genetics , Limb Deformities, Congenital/genetics , Male , Mutation , Neoplastic Syndromes, Hereditary/genetics , Saudi Arabia
15.
J Pathol ; 238(4): 584-97, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26690880

ABSTRACT

Well-differentiated human cancers share transcriptional programmes with the normal tissue counterparts from which they arise. These programmes broadly influence cell behaviour and function and are integral modulators of malignancy. Here, we show that the master regulator of motile ciliogenesis, FOXJ1, is highly expressed in cells along the ventricular surface of the human brain. Strong expression is present in cells of the ependyma and the choroid plexus as well as in a subset of cells residing in the subventricular zone. Expression of FOXJ1 and its transcriptional programme is maintained in many well-differentiated human tumours that arise along the ventricle, including low-grade ependymal tumours and choroid plexus papillomas. Anaplastic ependymomas as well as choroid plexus carcinomas show decreased FOXJ1 expression and its associated ciliogenesis programme genes. In ependymomas and choroid plexus tumours, reduced expression of FOXJ1 and its ciliogenesis programme are markers of poor outcome and are therefore useful biomarkers for assessing these tumours. Transitions in ciliogenesis define distinct differentiation states in ependymal and choroid plexus tumours with important implications for patient care. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Choroid Plexus Neoplasms/metabolism , Choroid Plexus Neoplasms/pathology , Ependymoma/metabolism , Forkhead Transcription Factors/metabolism , Brain Neoplasms/genetics , Cell Differentiation/physiology , Choroid Plexus Neoplasms/genetics , Ependyma/metabolism , Ependymoma/genetics , Forkhead Transcription Factors/genetics , Humans
16.
Cancer Genet ; 208(6): 345-50, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25963524

ABSTRACT

Unlike patients with World Health Organization (WHO) grade I meningiomas, which are considered benign, patients with WHO grade III meningiomas have very high mortality rates. The principles underlying tumor progression in meningioma are largely unknown, yet a detailed understanding of these mechanisms will be required for effective management of patients with these high grade lethal tumors. We present a case of an intraventricular meningioma that at first presentation displayed remarkable morphologic heterogeneity-composed of distinct regions independently fulfilling histopathologic criteria for WHO grade I, II, and III designations. The lowest grade regions had classic meningothelial features, while the highest grade regions were markedly dedifferentiated. Whereas progression in meningiomas is generally observed during recurrence following radiation and systemic medical therapies, the current case offers us a snapshot of histologic progression and intratumoral heterogeneity in a native pretreatment context. Using whole exome sequencing and high resolution array-based comparative genomic hybridization, we observed marked genetic heterogeneity between the various areas. Notably, in the higher grade regions we found increased aneuploidy with progressive loss of heterozygosity, the emergence of mutations in the TERT promoter, and compromise of ARID1A. These findings provide new insights into intratumoral heterogeneity in the evolution of malignant phenotypes in anaplastic meningiomas and potential pathways of malignant progression.


Subject(s)
Meningeal Neoplasms/genetics , Meningioma/genetics , Meningioma/pathology , Nuclear Proteins/genetics , Telomerase/genetics , Transcription Factors/genetics , DNA-Binding Proteins , Disease Progression , Female , Humans , Middle Aged , Mutation , Neoplasm Recurrence, Local/genetics , Promoter Regions, Genetic/genetics
17.
Mod Pathol ; 28(4): 596-606, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25412847

ABSTRACT

Antibodies that recognize neo-epitopes in tumor cells are valuable tools in the evaluation of tissue biopsy or resection specimens. The VE1 antibody that recognizes the V600E-mutant BRAF protein is one such example. We have recently shown that the vast majority of papillary craniopharyngiomas-tumors that arise in the sellar or suprasellar regions of the brain-harbor BRAF V600E mutations. The VE1 antibody can be effective in discriminating papillary craniopharyngioma from adamantinomatous craniopharyngioma, which harbors mutations in CTNNB1 and not BRAF. While further characterizing the use of the VE1 antibody in the differential diagnosis of suprasellar lesions, we found that the VE1 antibody stains the epithelial cells lining Rathke's cleft cysts with very strong staining of the cilia of these cells. We used targeted sequencing to show that Rathke's cleft cysts do not harbor the BRAF V600E mutation. Moreover, we found that the VE1 antibody reacts strongly with cilia in various structures-the bronchial airways, the fallopian tubes, the nasopharynx, and the epididymis-as well as with the flagella of sperm. In addition, VE1 reacts strongly with the cilia of the ependymal lining of the brain and with the cilia-containing microlumens of ependymoma tumors. There is significant sequence homology between the synthetic peptide (amino acid 596-606 of BRAF V600E: GLATEKSRWSG) that was used to generate the VE1 antibody and regions of multiple axonemal dynein heavy chain proteins (eg, DNAH2, DNAH7, and DNAH12). These proteins are major components of the axonemes of cilia and flagella where they drive the sliding of microtubules. In ELISA assays, we show that the VE1 antibody recognizes epitopes from these proteins. A familiarity with the cross-reactivity of the VE1 antibody with epitopes of proteins in cilia is of value when evaluating tissues stained with this important clinical antibody.


Subject(s)
Antibodies, Monoclonal , Axonemal Dyneins/metabolism , Cilia/metabolism , Epitopes , Proto-Oncogene Proteins B-raf/immunology , Biomarkers, Tumor , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Central Nervous System Cysts/metabolism , Central Nervous System Cysts/pathology , Cross Reactions , Humans , Proto-Oncogene Proteins B-raf/metabolism
18.
Oncotarget ; 5(21): 10596-606, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25347344

ABSTRACT

Meningiomas are a diverse group of tumors with a broad spectrum of histologic features. There are over 12 variants of meningioma, whose genetic features are just beginning to be described. Angiomatous meningioma is a World Health Organization (WHO) meningioma variant with a predominance of blood vessels. They are uncommon and confirming the histopathologic classification can be challenging. Given a lack of biomarkers that define the angiomatous subtype and limited understanding of the genetic changes underlying its tumorigenesis, we compared the genomic characteristics of angiomatous meningioma to more common meningioma subtypes. While typical grade I meningiomas demonstrate monosomy of chromosome 22 or lack copy number aberrations, 13 of 14 cases of angiomatous meningioma demonstrated a distinct copy number profile--polysomies of at least one chromosome, but often of many, especially in chromosomes 5, 13, and 20. WHO grade II atypical meningiomas with angiomatous features have both polysomies and genetic aberrations characteristic of other atypical meningiomas. Sequencing of over 560 cancer-relevant genes in 16 cases of angiomatous meningioma showed that these tumors lack common mutations found in other variants of meningioma. Our study demonstrates that angiomatous meningiomas have distinct genomic features that may be clinically useful for their diagnosis.


Subject(s)
Biomarkers, Tumor/genetics , Chromosome Aberrations , Chromosomes, Human, Pair 5/genetics , Meningeal Neoplasms/genetics , Meningioma/genetics , Transcriptome , Comparative Genomic Hybridization , DNA Copy Number Variations , Exons/genetics , High-Throughput Nucleotide Sequencing , Humans , Meningeal Neoplasms/pathology , Meningioma/pathology , Mutation , Neoplasm Grading
SELECTION OF CITATIONS
SEARCH DETAIL
...