Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(9)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37760743

ABSTRACT

Bacterial ribosome small subunit rRNA (16S rRNA) contains 11 nucleotide modifications scattered throughout all its domains. The 16S rRNA pseudouridylation enzyme, RsuA, which modifies U516, is a survival protein essential for bacterial survival under stress conditions. A comparison of the growth curves of wildtype and RsuA knock-out E. coli strains illustrates that RsuA renders a survival advantage to bacteria under streptomycin stress. The RsuA-dependent growth advantage for bacteria was found to be dependent on its pseudouridylation activity. In addition, the role of RsuA as a trans-acting factor during ribosome biogenesis may also play a role in bacterial growth under streptomycin stress. Furthermore, circular dichroism spectroscopy measurements and RNase footprinting studies have demonstrated that pseudouridine at position 516 influences helix 18 structure, folding, and streptomycin binding. This study exemplifies the importance of bacterial rRNA modification enzymes during environmental stress.

2.
ChemMedChem ; 18(4): e202200549, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36567478

ABSTRACT

N6-methyladenosine (m6 A) is the most abundant nucleotide modification observed in eukaryotic mRNA. Changes in m6 A levels in transcriptome are tightly correlated to expression levels of m6 A methyltransferases and demethylases. Abnormal expression levels of methyltransferases and demethylases are observed in various diseases and health conditions such as cancer, male infertility, and obesity. This research explores the efficacy of m6 A-modified RNA as an anticancer drug target. We discovered a 12-mer peptide that binds specifically to m6 A-modified RNA using phage display experiments. Our fluorescence-based assays illustrate the selected peptide binds to methylated RNA with lower micromolar affinity and inhibit the binding of protein FTO, a demethylase enzyme specific to m6 A modification. When cancer cell lines were treated with mtp1, it led to an increase in m6 A levels and a decrease in cell viability. Hence our results illustrate the potential of mtp1 to be developed as a drug for cancer.


Subject(s)
Neoplasms , RNA , Male , Humans , Methylation , RNA/metabolism , Methyltransferases/metabolism , RNA, Messenger/genetics , Neoplasms/drug therapy , Neoplasms/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
3.
Viruses ; 16(1)2023 12 31.
Article in English | MEDLINE | ID: mdl-38257775

ABSTRACT

Viruses pose a great threat to people's lives. Enterovirus A71 (EV-A71) infects children and infants all over the world with no FDA-approved treatment to date. Understanding the basic mechanisms of viral processes aids in selecting more efficient drug targets and designing more effective antivirals to thwart this virus. The 5'-untranslated region (5'-UTR) of the viral RNA genome is composed of a cloverleaf structure and an internal ribosome entry site (IRES). Cellular proteins that bind to the cloverleaf structure regulate viral RNA synthesis, while those that bind to the IRES also known as IRES trans-acting factors (ITAFs) regulate viral translation. In this review, we survey the cellular proteins currently known to bind the 5'-UTR and influence viral gene expression with emphasis on comparing proteins' functions and localizations pre- and post-(EV-A71) infection. A comprehensive understanding of how the host cell's machinery is hijacked and reprogrammed by the virus to facilitate its replication is crucial for developing effective antivirals.


Subject(s)
Enterovirus Infections , Enterovirus , Child , Infant , Humans , Drug Repositioning , 5' Untranslated Regions , Internal Ribosome Entry Sites , Antigens, Viral , RNA, Viral/genetics , Enterovirus/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
4.
RSC Adv ; 10(38): 22361-22369, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-35514586

ABSTRACT

The ribosome is the ribonucleoprotein machine that carries out protein biosynthesis in all forms of life. Perfect synchronization between ribosomal RNA (rRNA) transcription, folding, post-transcriptional modification, maturation, and assembly of r-proteins is essential for the rapid formation of structurally and functionally accurate ribosomes. Many RNA nucleotide modification enzymes may function as assembly factors that oversee the accuracy of ribosome assembly. The protein RsmG is a methyltransferase enzyme that is responsible for N7 methylation in G527 of 16S rRNA. Here we illustrate the ability of RsmG to bind various premature small subunit ribosomal RNAs with contrasting affinities. Protein RsmG binds with approximately 15-times higher affinity to premature 16S rRNA with the full leader sequence compared to that of mature 16S rRNA. Various r-proteins which bind to the 5'-domain influence RsmG binding. The observed binding cooperativity between RsmG and r-proteins is sensitive to the maturation status of premature small subunit rRNA. However, neither the maturation of 16S rRNA nor the presence of various r-proteins significantly influence the methylation activity of RsmG. The capability of RsmG to bind to premature small subunit rRNA and alter its binding preference to various RNA-protein complexes based on the maturation of rRNA indicates its ability to influence ribosome assembly.

SELECTION OF CITATIONS
SEARCH DETAIL
...