Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cells ; 11(19)2022 09 23.
Article in English | MEDLINE | ID: mdl-36230935

ABSTRACT

Cancer cells reprogram their metabolisms to achieve high energetic requirements and produce precursors that facilitate uncontrolled cell proliferation. Metabolic reprograming involves not only the dysregulation in glucose-metabolizing regulatory enzymes, but also the enzymes engaging in the lipid and amino acid metabolisms. Nevertheless, the underlying regulatory mechanisms of reprograming are not fully understood. Non-coding RNAs (ncRNAs) as functional RNA molecules cannot translate into proteins, but they do play a regulatory role in gene expression. Moreover, ncRNAs have been demonstrated to be implicated in the metabolic modulations in breast cancer (BC) by regulating the metabolic-related enzymes. Here, we will focus on the regulatory involvement of ncRNAs (microRNA, circular RNA and long ncRNA) in BC metabolism, including glucose, lipid and glutamine metabolism. Investigation of this aspect may not only alter the approaches of BC diagnosis and prognosis, but may also open a new avenue in using ncRNA-based therapeutics for BC treatment by targeting different metabolic pathways.


Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Breast Neoplasms/genetics , Female , Glucose/metabolism , Glutamine , Humans , Lipids , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular , RNA, Long Noncoding/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
2.
Anticancer Agents Med Chem ; 22(10): 1897-1912, 2022.
Article in English | MEDLINE | ID: mdl-34488605

ABSTRACT

Lipid-based nanoparticles, as drug delivery carriers, are commonly used for the delivery of anti-cancer therapeutic agents. Due to their smaller particle size and similarity to cell membranes, Lipid-based nanoparticles are readily internalized into cancer cells. Cancer cells also overexpress receptors for specific ligands, including folic acid, hyaluronic acid, and transferrin, on their surface, thus, allowing the use of their ligands for surface modification of the lipid-based nanoparticles for their specific recognition by receptors on cancer cells. This would also allow the gradual intracellular accumulation of the targeted functionalized nanoplatforms. These ligand-receptor interactions eventually enhance the internalization of desired drugs by increasing the nanoplatforms cellular uptake. The cellular internalization of the nanoplatforms varies and depends on their physicochemical properties, including particle size, zeta potential, and shape. The cellular uptake is also influenced by the types of ligand internalization pathways utilized by cells, such as phagocytosis, macropinocytosis, and multiple endocytosis pathways. This review classifies and discusses lipidbased nanoparticles engineered to carry specific ligands, their recognition by receptors on cancer cells, and their cellular internalization pathways. Moreover, the intracellular fate of nanoparticles decorated with specific ligands and their best internalization pathway (caveolae-mediated endocytosis) for safe cargo delivery are also discussed.


Subject(s)
Nanoparticles , Neoplasms , Drug Carriers/chemistry , Humans , Ligands , Lipids , Nanoparticles/chemistry , Neoplasms/drug therapy , Particle Size
3.
Genes (Basel) ; 12(7)2021 07 20.
Article in English | MEDLINE | ID: mdl-34356120

ABSTRACT

The transcription factor high mobility group protein A2 (HMGA2) plays an important role in the pathogenesis of some cancers including breast cancer. Polyamidoamine dendrimer generation 4 is a kind of highly branched polymeric nanoparticle with surface charge and highest density peripheral groups that allow ligands or therapeutic agents to attach it, thereby facilitating target delivery. Here, methotrexate (MTX)- modified polyamidoamine dendrimer generation 4 (G4) (G4/MTX) was generated to deliver specific small interface RNA (siRNA) for suppressing HMGA2 expression and the consequent effects on folate receptor (FR) expressing human breast cancer cell lines (MCF-7, MDA-MB-231). We observed that HMGA2 siRNA was electrostatically adsorbed on the surface of the G4/MTX nanocarrier for constructing a G4/MTX-siRNA nano-complex which was verified by changing the final particle size and zeta potential. The release of MTX and siRNA from synthesized nanocomplexes was found in a time- and pH-dependent manner. We know that MTX targets FR. Interestingly, G4/MTX-siRNA demonstrates significant cellular internalization and gene silencing efficacy when compared to the control. Besides, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay demonstrated selective cell cytotoxicity depending on the folate receptor expressing in a dose-dependent manner. The gene silencing and protein downregulation of HMGA2 by G4/MTX-siRNA was observed and could significantly induce cell apoptosis in MCF-7 and MDA-MB-231 cancer cells compared to the control group. Based on the findings, we suggest that the newly developed G4/MTX-siRNA nano-complex may be a promising strategy to increase apoptosis induction through HMGA2 suppression as a therapeutic target in human breast cancer.


Subject(s)
Breast Neoplasms/genetics , HMGA2 Protein/genetics , Apoptosis/drug effects , Breast Neoplasms/therapy , Cell Line, Tumor , Cell- and Tissue-Based Therapy/methods , Dendrimers/metabolism , Dendrimers/pharmacology , Dendrimers/therapeutic use , Female , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Gene Silencing , HMGA2 Protein/metabolism , Humans , MCF-7 Cells , Methotrexate/pharmacology , Nylons/pharmacology , RNA, Small Interfering/genetics
4.
Adv Pharm Bull ; 10(3): 444-451, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32665904

ABSTRACT

Purpose: Based on WHO report, colorectal cancer (CRC) is the second cause of death among patients with cancer worldwide. Dysregulation of miRNAs expressions has been demonstrated in different human cancers, especially CRC. Studies have shown that miR-330 could act as both TS-miR and/or oncomiR in different types of cancers. BACH1 is also identified as a transcription factor, which is involved in ontogenesis. In this study, we evaluated the CRC suppression via silencing of BACH1 by small silencer molecule called miR-330. Methods: Firstly, we analyzed the BACH1, miR-330-3p and miR-330-5p expressions according to the colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ) project established from a patient of the colon and rectal cancer patients in The Cancer Genome Atlas (TCGA) database. The targeting of BACH1 via miR-330 in human CRC cells was evaluated by Vejnar bioinformatics methods, and confirmed by qRT-PCR and western blot analysis. Proliferation was performed by MTT assay. The MMP9, CXCR4, and VEGFR proteins were measured by western blotting. Results: The analysis of BACH1, miR-330-3p, and miR-330-5p expressions according to the COAD and READ projects showed that BACH1 was overexpressed, but miR-330-3p and miR330-5p were reduced in CRC tumors compared to normal controls. The miR-330 induction prevented proliferation of CRC cell by targeting BACH1 mRNA, which represses MMP9, C-X-C chemokine receptor type 4 (CXCR4), and vascular endothelial growth factor receptor (VEGFR) proteins expressions. Conclusion: Our results suggested that BACH1 is a potential target for miR-330 in CRC cells. The miR-330 induction inhibits CRC cells proliferation by suppressing BACH1 expression in posttranscriptional level. It was suggested that targeting of BACH1 via miRNA such as miR-330 could be a valid strategy in the field of CRC targeted therapy via modulating the oncogenic signaling pathway.

5.
J Cell Physiol ; 235(10): 6817-6830, 2020 10.
Article in English | MEDLINE | ID: mdl-31989649

ABSTRACT

The use of liposomes as drug carriers improves the therapeutic efficacy of anticancer drugs, while at the same time reducing side effects. Hyaluronic acid (HA) is recognized by the CD44 receptor, which is overexpressed in many cancer cells. In this study, we developed HA-modified liposomes encapsulating 5-fluorouracil (5-FU) and tested them against a CD44 expressing colorectal cell line (HT29) and a non-CD44 expressing hepatoma cell line. The average size of 5-FU-lipo and 5-FU-lipo-HA nanoparticles were 112 ± 28 and 144 ± 77 nm, respectively. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay showed selective cancer cell death depending on the CD44 expression in a time-dependent manner. Apoptosis assays and cell-cycle analysis indicated that G0/G1 arrest occurred. The colony formation study revealed that cells treated with 5-FU-lipo and 5-FU-lipo-HA had reduced colony formation. Quantitative reverse-transcription polymerase chain reaction study showed that the oncogenic messenger RNA and microRNA levels were significantly reduced in the 5-FU-lipo-HA-treated group, while tumor suppressors were increased in that group. We suggest that optimal targeted delivery and release of 5-FU into colorectal cancer cells, renders them susceptible to apoptosis, cell-cycle arrest, and decreased colony formation.


Subject(s)
Colorectal Neoplasms/drug therapy , Fluorouracil/chemistry , Fluorouracil/pharmacology , Hyaluronic Acid/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Drug Carriers/chemistry , Drug Delivery Systems/methods , G1 Phase/drug effects , HT29 Cells , Hep G2 Cells , Humans , Hyaluronan Receptors/metabolism , Particle Size , Resting Phase, Cell Cycle/drug effects
6.
J Cell Physiol ; 234(10): 17714-17726, 2019 08.
Article in English | MEDLINE | ID: mdl-30825204

ABSTRACT

During breast cancer progression, tumor cells acquire multiple malignant features. The transcription factors and cell cycle regulators high mobility group A2 (HMGA2) and BTB and CNC homology 1 (Bach-1) are overexpressed in several cancers, but the mechanistic understanding of how HMGA2 and Bach-1 promote cancer development has been limited. We found that HMGA2 and Bach-1 are overexpressed in breast cancer tissues and their expression correlates positively in tumors but not in normal tissues. Individual HMGA2 or Bach-1 knockdown downregulates expression of both proteins, suggesting a mutual stabilizing effect between the two proteins. Importantly, combined HMGA2 and Bach-1 knockdown additively decrease cell proliferation, migration, epithelial-to-mesenchymal transition, and colony formation, while promoting apoptotic cell death via upregulation of caspase-3 and caspase-9. First the first time, we show that HMGA2 and Bach-1 overexpression in tumors correlate positively and that the proteins cooperatively suppress a broad range of malignant cellular properties, such as proliferation, migration, clonogenicity, and evasion of apoptotic cell death. Thus, our observations suggest that combined targeting of HMGA2 and Bach1 may be an effective therapeutic strategy to treat breast cancer.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Movement/genetics , HMGA2 Protein/genetics , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Down-Regulation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Middle Aged , Up-Regulation/genetics
7.
Iran J Pharm Res ; 18(3): 1168-1179, 2019.
Article in English | MEDLINE | ID: mdl-32641930

ABSTRACT

Erlotinib (ELT) as a small molecule with poor solubility, poor bioavailability, and instability in gastrointestinal environment, has been considered as a therapeutic agent for Non-Small-Cell Lung Cancer (NSCLC) therapy through oral administration. In the present study, ELT-liposome and ELT-NLCs were successfully prepared and characterized by assessment of the particle size, zeta potential (ZP), polydispersity index (PDI), encapsulation efficiency (EE), and drug loading (DL). DAPI staining and Flow cytometry techniques were employed to probe anticancer activities of the optimal formulations. The obtained results indicated that the average size of optimized ELT-NLCs was 109 ± 2 nm, while the optimal formulation of ELT-liposome was 130 ± 4 nm. In addition, the values of EE, DL, and cellular uptake were higher in ELT-NLCs than ELT-liposome. Moreover, the stability of ELT-NLCs and ELT-liposome were not significantly changed (P > 0.05) within storage time. The results of anti-cancer assessment indicated that ELT-NLCs caused more cell viability reduction than ELT-liposome and free ELT. According to the Flow cytometry and DAPI staining results, the exposed A549 cells with ELT-NLCs had more rates of apoptosis than ELT-liposome. The obtained data from this study clearly showed that ELT-NLCs had better anti-cancer activity than ELT-liposome, which may be related to the effective nano particle size, PDI, EE, and DL of ELT-NLCs.

8.
Appl Mater Today ; 12: 177-190, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30511014

ABSTRACT

Drug delivery systems for cancer chemotherapy are employed to improve the effectiveness and decrease the side-effects of highly toxic drugs. Most chemotherapy agents have indiscriminate cytotoxicity that affects normal, as well as cancer cells. To overcome these problems, new more efficient nanosystems for drug delivery are increasingly being investigated. Polyamidoamine (PAMAM) dendrimers are an example of a versatile and reproducible type of nanocarrier that can be loaded with drugs, and modified by attaching target-specific ligands that recognize receptors that are over-expressed on cancer cells. PAMAM dendrimers with a high density of cationic charges display electrostatic interactions with nucleic acids (DNA, siRNA, miRNA, etc.), creating dendriplexes that can preserve the nucleic acids from degradation. Dendrimers are prepared by conducting several successive "generations" of synthetic reactions so their size can be easily controlled and they have good uniformity. Dendrimers are particularly well-suited to co-delivery applications (simultaneous delivery of drugs and/or genes). In the current review, we discuss dendrimer-based targeted delivery of drugs/genes and co-delivery systems mainly for cancer therapy.

9.
Eur J Pharm Sci ; 122: 311-330, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30003954

ABSTRACT

Dendrimers are nano-sized and three-dimensional macromolecules with well-defined globular architecture and are widely used in various aspects such as drug and gene delivery owing to multivalent and host-guest entrapment properties. However, dendrimers like other nanomaterials have some disadvantages for example rapid clearance by reticuloendothelial system, toxicity due to interaction of amine terminated group with cell membrane, low transfection efficiency and lack of controlled release behavior, which reduce their therapeutic efficiency. To solve these problems, surface functionalization of dendrimers can be carried out. Surface functionalization not only mitigates this obstacle but also renders excessive specificity to dendrimer to improve efficiency of cancer therapy. Specific properties in cancer cell compared to normal cells such as overexpression of various receptors and difference in biological condition like pH, temperature and redox of tumor environment can be an appropriate strategy to increase site-specific targeting efficiency. Therefore, in this article we focus on numerous functionalization strategies, which are used in the modification of dendrimers through attachment of lipid, amino acid, protein/peptide, aptamer, vitamin, antibody. Moreover, increased biocompatibility, site-specific delivery based on various ligands, enhanced transfection efficiency, sustained and controlled release behavior based on stimuli responsiveness are benefits of functionalized dendrimer which we discuss in this review. Overall, these functionalized dendrimers can open a new horizon in the field of targeted drug and gene delivery.


Subject(s)
Dendrimers/administration & dosage , Nanostructures/administration & dosage , Neoplasms/drug therapy , Animals , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Dendrimers/chemistry , Humans , Nanostructures/chemistry
10.
Pharm Biol ; 53(8): 1104-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25612773

ABSTRACT

CONTEXT: Several therapeutic effects such as antioxidant and blood glucose-lowering activities have been reported for Peganum harmala L (Zygophyllaceae) (PH) seeds, Rhus coriaria L (Anacardiaceae) (RC) fruits, and Urtica dioica L (Urticaceae) (UD) leaves. OBJECTIVE: This study investigates the effects of a triplex mixture (1:1:1) of these medicinal plants on metabolic and histological parameters in diabetic rats. MATERIALS AND METHODS: Aqueous extracts of PH, RC and UD were administered as either monotherapy or in combination at a final dose of 200 mg/kg to alloxan-induced diabetic rats by daily gavage. Biochemical parameters including blood glucose, liver function-related enzymes, lipid profile, and creatinine were estimated by spectrophotometric methods. Tissues from the liver and kidney stained with hematoxylin/eosin were histologically examined. The results obtained from the exposure groups were compared to either healthy or diabetic control groups. RESULTS: Compared with the diabetic control rats, all aqueous extracts (ED50 = 11.5 ± 2.57 mg/ml) led to significant decreases in the levels of ALP (1.39-2.23-fold, p < 0.05), low-density lipoprotein cholesterol (LDL-C) (1.79-3.26-fold, p < 0.05), and blood glucose (1.27-4.16-fold, p < 0.05). The serum concentrations of TG was decreased only by treatment with UD and triplex mixture (1.25- and 1.20-fold, respectively, p < 0.05). Among the studied parameters, alanine aminotransferase (ALT), LDL-C, TG, and creatinine recovered to healthy control levels after 4 weeks of treatment with the extract mixture. CONCLUSION: This study showed that PH, RC, and UD extracts, especially their combination, had significant antidiabetic, hypolipidemic, and liver and renal damage recovering effects.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/administration & dosage , Peganum , Plant Extracts/administration & dosage , Rhus , Urtica dioica , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/blood , Drug Combinations , Hypoglycemic Agents/isolation & purification , Male , Plant Extracts/isolation & purification , Rats , Rats, Wistar , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...