Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Carcinogenesis ; 30(3): 449-56, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19126649

ABSTRACT

Increasingly invasive bladder cancer cells lines displayed insensitivity toward a panel of dietary-derived ligands for members of the nuclear receptor superfamily. Insensitivity was defined through altered gene regulatory actions and cell proliferation and reflected both reduced receptor expression and elevated nuclear receptor corepressor 1 (NCOR1) expression. Stable overexpression of NCOR1 in sensitive cells (RT4) resulted in a panel of clones that recapitulated the resistant phenotype in terms of gene regulatory actions and proliferative responses toward ligand. Similarly, silencing RNA approaches to NCOR1 in resistant cells (EJ28) enhanced ligand gene regulatory and proliferation responses, including those mediated by peroxisome proliferator-activated receptor (PPAR) gamma and vitamin D receptor (VDR) receptors. Elevated NCOR1 levels generate an epigenetic lesion to target in resistant cells using the histone deacetylase inhibitor vorinostat, in combination with nuclear receptor ligands. Such treatments revealed strong-additive interactions toward the PPARgamma, VDR and Farnesoid X-activated receptors. Genome-wide microarray and microfluidic quantitative real-time, reverse transcription-polymerase chain reaction approaches, following the targeting of NCOR1 activity and expression, revealed the selective capacity of this corepressor to govern common transcriptional events of underlying networks. Combined these findings suggest that NCOR1 is a selective regulator of nuclear receptors, notably PPARgamma and VDR, and contributes to their loss of sensitivity. Combinations of epigenetic therapies that target NCOR1 may prove effective, even when receptor expression is reduced.


Subject(s)
DNA-Binding Proteins/metabolism , Nuclear Proteins/physiology , PPAR gamma/metabolism , Receptors, Calcitriol/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Repressor Proteins/physiology , Transcription Factors/metabolism , Urinary Bladder Neoplasms/metabolism , Cell Line, Tumor , Epigenesis, Genetic , Histone Deacetylase Inhibitors , Humans , Hydroxamic Acids/pharmacology , Ligands , Nuclear Proteins/genetics , Nuclear Receptor Co-Repressor 1 , RNA Interference , Repressor Proteins/genetics , Urinary Bladder Neoplasms/pathology , Vorinostat
2.
Anticancer Res ; 26(4A): 2557-66, 2006.
Article in English | MEDLINE | ID: mdl-16886664

ABSTRACT

BACKGROUND: The ligand-mediated switch from binding co-repressor to co-activator complexes is central to the transcriptional actions of the vitamin D receptor (VDR) and other nuclear receptors. The capacity of deregulated co-repressors to attenuate the responsiveness of VDR signalling in cancer models was examined. MATERIALS AND METHODS: Proliferation and gene regulation studies were undertaken in non-malignant and malignant cell line and primary models. RESULTS: Both primary tissue models and cancer cell lines displayed a spectrum of suppressed responsiveness towards 1alpha, 25 hydroxy vitamin D3 (1alpha25(OH)2D3) which correlated with elevated co-repressor content: specifically, elevated silencing mediator of retinoid and thyroid hormone receptors/nuclear co-repressor 2 (NCoR2/SMRT) in prostate cancer cell lines and primary tumour cultures, and elevated nuclear receptor co-repressor 1 (NCoR1) in breast cancer cell lines. Interestingly, whilst the cancer cell lines frequently also displayed reduced VDR content, the primary tumour material retained and/or elevated VDR mRNA, correlated with co-repressor content. Functional approaches towards NCoR2/SMRT (siRNA) in prostate cancer cells or NCoR1 (overexpression) in non-malignant breast epithelial cells confirmed a role in suppressing VDR transcriptional and cellular actions. Targeted co-treatments of 1alpha25(OH)2D3 plus HDAC inhibitors (TSA, NaB) resulted in re-expression of antiproliferative target genes (e.g., GADD45alpha, p21(waf1/cip1)) and synergistic inhibition of proliferation. CONCLUSION: These data suggest that VDR actions in solid tumours are retained, but were skewed by epigenetic mechanisms to suppress selectively antiproliferative target gene promoter responses. This molecular lesion provides a novel chemotherapy target for acceptable doses of 1alpha25(OH)2D3 plus HDAC inhibitors.


Subject(s)
Neoplasms/genetics , Receptors, Calcitriol/genetics , Animals , Calcitriol/pharmacology , Epigenesis, Genetic , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Receptors, Calcitriol/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
3.
Expert Rev Endocrinol Metab ; 1(2): 219-231, 2006 Mar.
Article in English | MEDLINE | ID: mdl-30754135

ABSTRACT

The impact of dietary intake upon cell and tissue physiology, as well as pathophysiology, has emerged as being highly significant to the etiology of a number of high-profile malignancies. The vitamin D receptor (VDR) is a member of a large transcription factor family of nuclear receptors and responds specifically to a hormonal micronutrient (1α25(OH)2D3). A central endocrine role for this receptor in bone health was established at the beginning of the 20th century. An alternative role has been established over the last 25 years for the VDR to regulate cell growth and division, and promote differentiation through autocrine and paracrine mechanisms. These findings from in vitro and in vivo experiments have generated considerable interest in the potential to target the VDR in either chemoprevention or chemotherapy cancer settings. As with many potential cancer therapeutics, it has become equally clear that cancer cells display de novo and acquired mechanisms of resistance to these actions. Consequently, researchers are developing a range of experimental and clinical options to bring about more targeted actions, overcome resistance and enhance the efficacy of VDR-centered therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL