Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 226: 113304, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33964613

ABSTRACT

The use of electron mirrors in aberration correction and surface-sensitive microscopy techniques such as low-energy electron microscopy has been established. However, in this work, by implementing an easy to construct, fully electrostatic electron mirror system under a sample in a conventional scanning electron microscope (SEM), we present a new imaging scheme which allows us to form scanned images of the top and bottom surfaces of the sample simultaneously. We believe that this imaging scheme could be of great value to the field of in-situ SEM which has been limited to observation of dynamic changes such as crack propagation and other surface phenomena on one side of samples at a time. We analyze the image properties when using a flat versus a concave electron mirror system and discuss two different regimes of operation. In addition to in-situ SEM, we foresee that our imaging scheme could open up avenues towards spherical aberration correction by the use of electron mirrors in SEMs without the need for complex beam separators.

2.
Sci Rep ; 6: 19542, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26790372

ABSTRACT

Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids.

3.
Nanotechnology ; 24(35): 355501, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23917424

ABSTRACT

A two-dimensional array of gold nano-patches on a highly reflective mirror is proposed for refractive index sensing based on changes in the reflected colors. The grating on the mirror creates localized surface plasmon resonances resulting in a minimum in the visible reflectance spectra. The wavelength of the resonance can be tuned by changing the width of the nano-patches and is also dependent on the refractive index of the surrounding medium. The color variation due to change in the refractive index is measured and used to realize a simple low-cost sensor with a refractive index resolution better than 10⁻5 just using image processing. The efficacy of the proposed sensor is also demonstrated for surface sensing by depositing thin layers of silicon dioxide. The color difference due to the addition of a 3 nm thick layer of silicon dioxide is detectable by the naked eye and deposition thickness of 2 Šcan be resolved using image processing.


Subject(s)
Colorimetry/instrumentation , Gold/chemistry , Nanostructures/chemistry , Surface Plasmon Resonance/instrumentation , Equipment Design , Refractometry , Silicon Dioxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...