Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 121(1): 139-156, 2024 01.
Article in English | MEDLINE | ID: mdl-37638652

ABSTRACT

Species of bacteria from the genus Cupriavidus are known, in part, for their ability to produce high amounts of poly-hydroxybutyrate (PHB) making them attractive candidates for bioplastic production. The native synthesis of PHB occurs during periods of metabolic stress, and the process regulating the initiation of PHB accumulation in these organisms is not fully understood. Screening an RB-TnSeq transposon library of Cupriavidus basilensis 4G11 allowed us to identify two genes of an apparent, uncharacterized two-component system, which when omitted from the genome enable increased PHB productivity in balanced, nonstress growth conditions. We observe average increases in PHB productivity of 56% and 41% relative to the wildtype parent strain upon deleting each gene individually from the genome. The increased PHB phenotype disappears, however, in nitrogen-free unbalanced growth conditions suggesting the phenotype is specific to fast-growing, replete, nonstress growth. Bioproduction modeling suggests this phenotype could be due to a decreased reliance on metabolic stress induced by nitrogen limitation to initiate PHB production in the mutant strains. Due to uncertainty in the two-component system's input signal and regulon, the mechanism by which these genes impart this phenotype remains unclear. Such strains may allow for the use of single-stage, continuous bioreactor systems, which are far simpler than many PHB bioproduction schemes used previously, given a similar product yield to batch systems in such a configuration. Bioproductivity modeling suggests that omitting this regulation in the cells may increase PHB productivity up to 24% relative to the wildtype organism when using single-stage continuous systems. This work expands our understanding of the regulation of PHB accumulation in Cupriavidus, in particular the initiation of this process upon transition into unbalanced growth regimes.


Subject(s)
Cupriavidus necator , Cupriavidus , Hydroxybutyrates/metabolism , Cupriavidus/genetics , Bioreactors , Nitrogen/metabolism , Polyesters/metabolism
2.
Bioelectrochemistry ; 145: 108054, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35144165

ABSTRACT

Electromicrobial production (EMP) systems can store renewable energy and CO2 in many-carbon molecules inaccessible to abiotic electrochemistry. Here, we develop a multiphysics model to investigate the fundamental and practical limits of EMP enabled by direct electron uptake. We also identify potential electroautotrophic organisms and metabolic engineering strategies to enable electroautotrophy in organisms lacking the native capability. Systematic model comparisons of microbial respiration and carbon fixation strategies revealed that, under aerobic conditions, the CO2 fixation rate is limited to < 6 µmol/cm2/hr by O2 mass transport despite efficient electron utilization. In contrast, anaerobic nitrate respiration enables CO2 fixation rates > 50 µmol/cm2/hr for microbes using the reductive tricarboxylic acid cycle. Phylogenetic analysis, validated by recapitulating experimental demonstrations of electroautotrophy, predicted multiple probable electroautotrophic organisms and a significant number of genetically tractable strains that require heterologous expression of < 5 proteins to gain electroautotrophic function. The model and analysis presented here will guide microbial engineering and reactor design for practical EMP systems.


Subject(s)
Carbon Dioxide , Electrons , Carbon Dioxide/metabolism , Phylogeny
3.
Front Microbiol ; 12: 700010, 2021.
Article in English | MEDLINE | ID: mdl-34394044

ABSTRACT

Providing life-support materials to crewed space exploration missions is pivotal for mission success. However, as missions become more distant and extensive, obtaining these materials from in situ resource utilization is paramount. The combination of microorganisms with electrochemical technologies offers a platform for the production of critical chemicals and materials from CO2 and H2O, two compounds accessible on a target destination like Mars. One such potential commodity is poly(3-hydroxybutyrate) (PHB), a common biopolyester targeted for additive manufacturing of durable goods. Here, we present an integrated two-module process for the production of PHB from CO2. An autotrophic Sporomusa ovata (S. ovata) process converts CO2 to acetate which is then directly used as the primary carbon source for aerobic PHB production by Cupriavidus basilensis (C. basilensis). The S. ovata uses H2 as a reducing equivalent to be generated through electrocatalytic solar-driven H2O reduction. Conserving and recycling media components is critical, therefore we have designed and optimized our process to require no purification or filtering of the cell culture media between microbial production steps which could result in up to 98% weight savings. By inspecting cell population dynamics during culturing we determined that C. basilensis suitably proliferates in the presence of inactive S. ovata. During the bioprocess 10.4 mmol acetate L -1 day-1 were generated from CO2 by S. ovata in the optimized media. Subsequently, 12.54 mg PHB L-1 hour-1 were produced by C. basilensis in the unprocessed media with an overall carbon yield of 11.06% from acetate. In order to illustrate a pathway to increase overall productivity and enable scaling of our bench-top process, we developed a model indicating key process parameters to optimize.

4.
ChemSusChem ; 14(1): 344-355, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-32996287

ABSTRACT

Mediated microbial electrosynthesis (MES) represents a promising strategy for the capture and conversion of CO2 into carbon-based products. We describe the development and application of a comprehensive multiphysics model to analyze a formate-mediated MES reactor. The model shows that this system can achieve a biomass productivity of ∼1.7 g L-1 h-1 but is limited by a competitive trade-off between O2 gas/liquid mass transfer and CO2 transport to the cathode. Synthetic metabolic strategies are evaluated for formatotrophic growth, which can enable an energy efficiency of ∼21 %, a 30 % improvement over the Calvin cycle. However, carbon utilization efficiency is only ∼10 % in the best cases due to a futile CO2 cycle, so gas recycling will be necessary for greater efficiency. Finally, separating electrochemical and microbial processes into separate reactors enables a higher biomass productivity of ∼2.4 g L-1 h-1 . The mediated MES model and analysis presented here can guide process design for conversion of CO2 into renewable chemical feedstocks.

SELECTION OF CITATIONS
SEARCH DETAIL
...