Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Langmuir ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979711

ABSTRACT

The development of aggregation-induced emission (AIE)-exhibiting compounds heavily relies on our evolving comprehension of their behavior at interfaces, an understanding that still remains notably limited. In this study, we explored the preparation of two-dimensional (2D) sensing films from 2,3-diphenylquinoxaline-based diazapolyoxa- and polyazamacrocycles displaying AIE via the Langmuir-Blodgett (LB) technique. This systematic investigation highlights the key role of the heteroatom-containing tether of 2,3-diphenylquinoxalines in the successful fabrication of Langmuir layers at the air-water interface and the transfer of AIE-emitting supramolecular aggregates onto solid supports. Using both diazapolyoxa- and polyazamacrocycles, we prepared AIE-exhibiting monolayer films containing emissive supramolecular aggregates on silica, mica, and quartz glass and characterized them using ultraviolet-visible (UV-vis) and photoluminescence (PL) spectroscopies, atomic force microscopy (AFM) imaging, and fluorescence microscopy. We also obtained multilayer AIE-emitting films through the LB technique, albeit with increased complexity. Remarkably, by employing the smallest macrocycle N2C3Q, we successfully prepared LB films suitable for the visual detection of acidic vapors. This sensing material, which contains a much lesser amount of organic dye compared with traditional drop-cast films, can be regenerated and utilized for real-life sample analysis, such as monitoring the presence of ammonia in the air and the freshness of meat.

2.
Org Biomol Chem ; 22(25): 5181-5192, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38864283

ABSTRACT

The development of luminescent molecular materials has advanced rapidly in recent decades, primarily driven by the synthesis of novel emissive compounds and a deeper understanding of excited-state mechanisms. Herein, we report a streamlined synthetic approach to light-emitting diazapolyoxa- and polyazamacrocycles N2CnOxQ and NyCnQ (n = 3-10; x = 2, 3; y = 2-5), incorporating a 2,3-diphenylquinoxaline residue (DPQ). This synthetic strategy based on macrocyclization through Pd-catalyzed amination reaction yields the target macrocycles in good or high yields (46-92%), enabling precise control over their structural parameters. A key role of the PhPF-tBu ligand belonging to the JosiPhos series in this macrocyclization was elucidated through DFT computation. This macrocyclization reaction eliminates the need for complex protecting-deprotecting procedures of secondary amine groups, offering a convenient and scalable method for the preparation of target compounds. Moreover, it boasts a potentially broad substrate scope, making it promising for structure-properties studies within photophysics, sensor development, and material synthesis. Photophysical properties of representative macrocycles were investigated, employing spectroscopic techniques and DFT computation. It was demonstrated that DPQ-containing macrocycles display aggregation-induced emission in a DCM-hexane solvent mixture despite the presence of flexible tethers within their structures. Single-crystal X-ray diffraction analysis of a representative compound N2C8O3Q allowed us to gain deeper insight into its molecular structure and AIE behaviour. The emissive aggregates of the N2C10O3Q macrocycle were immobilized on filter paper yielding AIE-exhibiting test strips for measuring acidity in vapors and in aqueous media.

3.
Dalton Trans ; 53(2): 535-551, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38053435

ABSTRACT

Ru(II) complexes with polypyridyl ligands (2,2'-bipyridine = bpy, 1,10-phenanthroline = phen) play a central role in the development of photocatalytic organic reactions. In this work, we synthesized four mixed-ligand [Ru(phen)(bpy)2]2+-type complexes (Ru-Pcat-A) bearing two phosphonate substituents P(O)(OH)(OR) (R = H, Et) attached to the phen core at positions 3,8 (Ru-3,8PH and Ru-3,8PHEt) and 4,7 (Ru-4,7PH and Ru-4,7PHEt) of the heterocycle in high yields (87-99%) and characterized them using spectral methods. Single crystal X-ray diffraction was employed to determine the coordination mode of the ditopic phen ligand in Ru-4,7PH. This complex exists as the neutral species and forms a 1D hydrogen-bonded framework in the crystals. The light absorption characteristics were found to be similar for all complexes prepared in this work. However, the emission maxima in aqueous solutions were significantly affected by the substitution of the heterocycle, ranging from 629 nm for Ru-4,7PH to 661 nm for Ru-3,8PHEt. The emission quantum yields in Ar-saturated deionized water showed a strong dependence on the substitution pattern of the phen ligand, with maximal values reaching approximately 0.11 for Ru-4,7PHEt and Ru-4,7PH, which is twice as high as that of the classical [Ru(bpy)3]2+ complex (Ru-bpy). The photocatalytic performance of Ru-Pcat-A was investigated using visible light photoredox catalytic transformations of tertiary amines. With Ru-Pcat-A, we achieved the phosphonylation of N-aryl-1,2,3,4-tetrahydroisoquinolines (THIQs) and cyanation of THIQs and N,N-dimethylaniline in methanol, while a mixture of nitromethane/methanol (1 : 1 v/v) proved to be the optimal solvent for conducting the nitromethylation of THIQs. In the majority of the studied reactions, Ru-4,7PHEt exhibited greater efficiency compared to Ru-bpy, and it could be easily separated from the products using water extraction and reused in the next catalytic cycle. We successfully performed seven consecutive nitromethylation and phosphonylation of N-phenyl-1,2,3,4-tetrahydroisoquinoline using the recycled homogeneous photoredox catalyst.

4.
Molecules ; 28(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677571

ABSTRACT

Synthetic approach to fluorescent polyaza- and polyoxadiazamacrocycles comprising a structural fragment of 6,7-diamino-2,3-diphenylquinoxaline has been elaborated using Pd-catalyzed amination providing target compounds in yields up to 77%. A series of nine novel N- and N,O-containing macrocyclic ligands differing by the number of donor sites and cavity size has been obtained. These compounds possess well-pronounced fluorescent properties with emission maxima in a blue region in aprotic solvents and high quantum yields of fluorescence, while in proton media, fluorescence shifts towards the green region of the spectrum. Using macrocycles 5c and 5e as examples, we have shown that such compounds can serve as dual-channel (colorimetric and fluorimetric) pH indicators in water media, with pH transition point and response being dependent on the macrocycle structure due to different sequences of protonation steps.

5.
Dalton Trans ; 51(36): 13612-13630, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35833669

ABSTRACT

Ru(II) complexes with polypyridyl ligands play a central role in the development of photocatalytic organic reactions. This work is aimed at the structural modification of such complexes to increase their photocatalytic efficiency and adapt them for the preparation of reusable photocatalytic systems. Nine [Ru(phen)(bpy)2]2+-type complexes (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline) (Ru-Pcat) bearing the P(O)(OEt)2 substituent attached to the phen core directly or through a 1,4-phenylene linker were synthesized and characterized by spectroscopic and electrochemical techniques. The coordination mode of phen ligands was confirmed by single crystal X-ray analysis. The (spectro)electrochemical data show that the first electron transfer in Ru-Pcat takes place on the phen ligand. The emission maxima and quantum yields are strongly affected by the substitution pattern, reaching the far-red region (697 nm) for Ru-3,8P2. The singlet oxygen quantum yields of Ru-Pcat were evaluated using the chemical trapping method. Finally, the photocatalytic performance of Ru-Pcat in the oxidation of sulfides with molecular oxygen was investigated. Both dialkyl and alkyl aryl sulfides were quantitatively transformed into sulfoxides under irradiation with a blue LED in the acetonitrile-water mixture (10 : 1) using a low loading of 0.005-0.05 mol% Ru(II) photocatalysts. To rationalize the effect of phosphonate substituents on the photocatalytic efficiency, comparative kinetic studies of (1) 4-nitrothioanisole oxidation proceeding predominantly via the electron transfer pathway and (2) oxidation of dibutyl sulfide wherein singlet oxygen serves as an oxidant have been performed. It was demonstrated that complexes with the P(O)(OEt)2 substituent at positions 4 and 7 outperform the benchmark photocatalyst Ru-(bpy)3 and the parent complex Ru-phen in the reactions proceeding through electron transfer (reductive quenching photocatalytic cycle). The TON in the oxidation of 4-methoxythioanisole was found to be as high as 1 000 000 that is, to our knowledge, the highest among previously reported photocatalysts. In contrast, upon separating the P(O)(OEt)2 group and the phen core with the 1,4-phenylene linker, singlet oxygen quantum yields significantly increase that favors reactions proceeding through energy transfer (the oxidation of dibutyl sulfide in our case). Thus, both series of Ru(II) complexes prepared in this work are promising for the improvement of known photocatalytic reactions and the development of new transformations.

6.
Molecules ; 26(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805408

ABSTRACT

N-heteroaryl substituted adamantane-containing amines are of substantial interest for their perspective antiviral and psychotherapeutic activities. Chlorine atom at alpha-position of N-heterocycles has been substituted by the amino group using convenient nucleophilic substitution reactions with a series of adamantylalkylamines. The prototropic equilibrium in these compounds was studied using NMR spectroscopy. The introduction of the second amino substituent in 4-amino-6-chloropyrimidine, 2-amino-chloropyrazine, and 1-amino-3-chloroisoquinoline was achieved using Pd(0) catalysis.


Subject(s)
Amines/chemistry , Adamantane/chemistry , Amination , Catalysis , Molecular Structure , Pyrazines/chemistry
7.
Org Biomol Chem ; 17(17): 4243-4260, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30860543

ABSTRACT

Chemoselective palladium-catalyzed arylation of polyamines with 6-bromoquinoline has been explored to prepare chelators for the detection of metal cations in aqueous media. The introduction of a single aromatic moiety into non-protected polyamine molecules was achieved using the commercially available Pd(dba)2/BINAP precatalyst to afford nitrogen chelators, in which the aromatic signalling unit is directly attached to the polyamine residue. Water-soluble receptors were then synthesized using N-alkylation of these polyamines by hydrophilic coordinating residues. By combining rich photophysical properties of the 6-aminoquinoline unit with a high coordination affinity of chelating polyamines and a hydrophilic character of carboxamido-substituted phosphonic acid diesters in a single molecular device, we synthesized chemosensor 5 for selective double-channel (UV-vis and fluorescence spectroscopies) detection of CuII ions in aqueous media at physiological levels. This receptor is suitable for the analysis of drinking water and fabrication of paper test strips for the naked-eye detection of CuII ions under UV-light. By increasing the number of donor sites we also obtained chemosensor 6 which is efficient for the detection of HgII ions. Moreover, chemosensor 6 is also suitable for multiple detection of metal ions because it chelates not only HgII but also CuII and ZnII ions displaying different responses of emission in the presence of these three cations.

8.
Chempluschem ; 84(5): 498-503, 2019 05.
Article in English | MEDLINE | ID: mdl-31943904

ABSTRACT

Eight 1,10-phenanthrolines bearing one or two 2-(1-adamantyloxy)ethylamino substituents attached to different positions of the heterocyclic core were prepared according to SN Ar or palladium-catalyzed amination reactions. Their reaction with cis-Ru(bpy)2 Cl2 (bpy=2,2'-bipyridine) was investigated and Ru(bpy)2 (L)(PF6 )2 (phen=1,10-phenanthroline) (L=amino-substituted 1,10-phenanthroline) complexes were obtained in good yields. The electronic structure and emissive properties of these complexes are strongly dependent on the position of the amino substituent in the heterocycle. Emission bands of the complexes bearing 2- and 4-substituted 1,10-phenanthroline ligands are red-shifted (up to 56 nm) and less intense compared to that of the parent [Ru(phen)(bpy)2 ](PF6 )2 . In contrast, the introduction of the substituent in 3- or 5-position of 1,10-phenanthroline ring induces only small decrease of luminescence and the brightness of the complex with the 3-substituted ligand is comparable to that of the parent complex.

9.
Chempluschem ; 81(1): 35-39, 2016 Jan.
Article in English | MEDLINE | ID: mdl-31968726

ABSTRACT

A series of ditopic macrocyclic receptors with variable cavity sizes, containing nitrogen or mixed (nitrogen-oxygen) donor sites and an externally directed 1,10-phenanthroline fragment, were prepared by means of a palladium-catalyzed amination reaction. A ditopic mixed NO-ligand (4 a) was coordinated to [Ru(bpy)2 ]2+ (bpy=2,2'-bipyridine) to prepare a luminescent and chromogenic complex, [Ru(bpy)2 (4 a)][PF]2 , which provided the selective dual-channel detection of CuII ions.

10.
Molecules ; 18(2): 2096-109, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23389254

ABSTRACT

Pd-catalyzed amination of isomeric 2,6-, 2,8-, 4,8- and 4,7-dichloroquinolines was studied using adamantane-containing amines in which substituents at the nitrogen atom differ in bulkiness. The selectivity of the amination of 2,6-dichloroquinoline was very low, substantially better results were obtained with 2,8-dichloroquinoline, and 4,8- and 4,7-dichloroquinolines provided the best yields of the amination products. Diamination of 4,8- and 4,7-dichloroquinolines was carried out with two amines which differ strongly in the bulkiness of the alkyl group. In the majority of cases BINAP ligand was successfully applied, however, it had to be replaced with DavePhos in certain reactions when using the most sterically hindered amine as well as for the diamination reactions.


Subject(s)
Adamantane/chemistry , Amines/chemistry , Palladium/chemistry , Quinolines/chemistry , Amination , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...