Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 849
Filter
1.
BMC Palliat Care ; 23(1): 165, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970056

ABSTRACT

BACKGROUND: The economic assessment of health care models in palliative care promotes their global development. The purpose of the study is to assess the cost-effectiveness of a palliative care program (named Contigo) with that of conventional care from the perspective of a health benefit plan administrator company, Sanitas, in Colombia. METHODS: The incremental cost-utility ratio (ICUR) and the incremental net monetary benefit (INMB) were estimated using micro-costing in a retrospective, analytical cross-sectional study on the care of terminally ill patients enrolled in a palliative care program. A 6-month time horizon prior to death was used. The EQ-5D-3 L questionnaire (EQ-5D-3 L) and the McGill Quality of Life Questionnaire (MQOL) were used to measure the quality of life. RESULTS: The study included 43 patients managed within the program and 16 patients who received conventional medical management. The program was less expensive than the conventional practice (difference of 1,924.35 US dollars (USD), P = 0.18). When compared to the last 15 days, there is a higher perception of quality of life, which yielded 0.25 in the EQ-5D-3 L (p < 0.01) and 1.55 in the MQOL (P < 0.01). The ICUR was negative and the INMB was positive. CONCLUSION: Because the Contigo program reduces costs while improving quality of life, it is considered to be net cost-saving and a model with value in health care. Greater availability of palliative care programs, such as Contigo, in Colombia can help reduce existing gaps in access to universal palliative care health coverage, resulting in more cost-effective care.


Subject(s)
Cost-Benefit Analysis , Palliative Care , Humans , Colombia , Palliative Care/economics , Palliative Care/methods , Palliative Care/standards , Cost-Benefit Analysis/methods , Male , Female , Cross-Sectional Studies , Middle Aged , Retrospective Studies , Aged , Surveys and Questionnaires , Quality of Life/psychology , Adult , Aged, 80 and over
2.
JCI Insight ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38885308

ABSTRACT

Parasympathetic dysfunction after chronic myocardial infarction (MI) is known to predispose ventricular tachyarrhythmias (VT/VF). VT/VF after MI is more common in males than females. The mechanisms underlying the decreased vagal tone and the associated sex difference in the occurrence of VT/VF after MI remain elusive. In this study, using optogenetic approaches, we found that responses of glutamatergic vagal afferent neurons were impaired following chronic MI in male mice, leading to reduced reflex efferent parasympathetic function. Molecular analyses of vagal ganglia demonstrated reduced glutamate levels, accompanied by decreased mitochondrial function and impaired redox status in infarcted males vs. sham animals. Interestingly, infarcted females demonstrated reduced vagal sensory impairment, associated with greater vagal ganglia glutamate levels and decreased vagal mitochondrial dysfunction and oxidative stress compared to infarcted males. Treatment with 17ß-estradiol mitigated this pathological remodeling and improved vagal neurotransmission in infarcted male mice. These data suggest that a decrease in efferent vagal tone following MI results from reduced glutamatergic afferent vagal signaling that may be due to impaired redox homeostasis in the vagal ganglia, which subsequently leads to pathological remodeling in a sex-dependent manner. Importantly, estrogen prevents pathological remodeling and improves parasympathetic function following MI.

3.
Lancet Oncol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38942046

ABSTRACT

BACKGROUND: The standard of care for patients with intermediate-to-high risk renal cell carcinoma is partial or radical nephrectomy followed by surveillance. We aimed to investigate use of nivolumab before nephrectomy followed by adjuvant nivolumab in patients with high-risk renal cell carcinoma to determine recurrence-free survival compared with surgery only. METHODS: In this open-label, randomised, phase 3 trial (PROSPER EA8143), patients were recruited from 183 community and academic sites across the USA and Canada. Eligible patients were aged 18 years or older with an Eastern Cooperative Oncology Group performance status of 0-1, with previously untreated clinical stage T2 or greater or Tany N+ renal cell carcinoma of clear cell or non-clear cell histology planned for partial or radical nephrectomy. Selected patients with oligometastatic disease, who were disease free at other disease sites within 12 weeks of surgery, were eligible for inclusion. We randomly assigned (1:1) patients using permuted blocks (block size of 4) within stratum (clinical TNM stage) to either nivolumab plus surgery, or surgery only followed by surveillance. In the nivolumab group, nivolumab 480 mg was administered before surgery, followed by nine adjuvant doses. The primary endpoint was investigator-reviewed recurrence-free survival in patients with renal cell carcinoma assessed in all randomly assigned patients regardless of histology. Safety was assessed in all randomly assigned patients who started the assigned protocol treatment. This trial is registered with ClinicalTrials.gov, NCT03055013, and is closed to accrual. FINDINGS: Between Feb 2, 2017, and June 2, 2021, 819 patients were randomly assigned to nivolumab plus surgery (404 [49%]) or surgery only (415 [51%]). 366 (91%) of 404 patients assigned to nivolumab plus surgery and 387 (93%) of 415 patients assigned to surgery only group started treatment. Median age was 61 years (IQR 53-69), 248 (30%) of 819 patients were female, 571 (70%) were male, 672 (88%) were White, and 77 (10%) were Hispanic or Latino. The Data and Safety Monitoring Committee stopped the trial at a planned interim analysis (March 25, 2022) because of futility. Median follow-up was 30·4 months (IQR 21·5-42·4) in the nivolumab group and 30·1 months (21·9-41·8) in the surgery only group. 381 (94%) of 404 patients in the nivolumab plus surgery group and 399 (96%) of 415 in the surgery only group had renal cell carcinoma and were included in the recurrence-free survival analysis. As of data cutoff (May 24, 2023), recurrence-free survival was not significantly different between nivolumab (125 [33%] of 381 had recurrence-free survival events) versus surgery only (133 [33%] of 399; hazard ratio 0·94 [95% CI 0·74-1·21]; one-sided p=0·32). The most common treatment-related grade 3-4 adverse events were elevated lipase (17 [5%] of 366 patients in the nivolumab plus surgery group vs none in the surgery only group), anaemia (seven [2%] vs nine [2%]), increased alanine aminotransferase (ten [3%] vs one [<1%]), abdominal pain (four [1%] vs six [2%]), and increased serum amylase (nine [2%] vs none). 177 (48%) patients in the nivolumab plus surgery group and 93 (24%) in the surgery only group had grade 3-5 adverse events due to any cause, the most common of which were anaemia (23 [6%] vs 19 [5%]), hypertension (27 [7%] vs nine [2%]), and elevated lipase (18 [5%] vs six [2%]). 48 (12%) of 404 patients in the nivolumab group and 40 (10%) of 415 in the surgery only group died, of which eight (2%) and three (1%), respectively, were determined to be treatment-related. INTERPRETATION: Perioperative nivolumab before nephrectomy followed by adjuvant nivolumab did not improve recurrence-free survival versus surgery only followed by surveillance in patients with high-risk renal cell carcinoma. FUNDING: US National Institutes of Health National Cancer Institute and Bristol Myers Squibb.

4.
Physiology (Bethesda) ; 39(5): 0, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38713091

ABSTRACT

Insulin-like growth factor-1 (IGF-1) signaling has multiple physiological roles in cellular growth, metabolism, and aging. Myocardial hypertrophy, cell death, senescence, fibrosis, and electrical remodeling are hallmarks of various heart diseases and contribute to the progression of heart failure. This review highlights the critical role of IGF-1 and its cognate receptor in cardiac hypertrophy, aging, and remodeling.


Subject(s)
Insulin-Like Growth Factor I , Signal Transduction , Humans , Insulin-Like Growth Factor I/metabolism , Animals , Signal Transduction/physiology , Receptor, IGF Type 1/metabolism , Myocardium/metabolism , Aging/metabolism , Aging/physiology , Heart/physiology , Cardiomegaly/metabolism , Cardiomegaly/physiopathology
5.
Cell Rep Med ; 5(5): 101548, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38703763

ABSTRACT

While weight gain is associated with a host of chronic illnesses, efforts in obesity have relied on single "snapshots" of body mass index (BMI) to guide genetic and molecular discovery. Here, we study >2,000 young adults with metabolomics and proteomics to identify a metabolic liability to weight gain in early adulthood. Using longitudinal regression and penalized regression, we identify a metabolic signature for weight liability, associated with a 2.6% (2.0%-3.2%, p = 7.5 × 10-19) gain in BMI over ≈20 years per SD higher score, after comprehensive adjustment. Identified molecules specified mechanisms of weight gain, including hunger and appetite regulation, energy expenditure, gut microbial metabolism, and host interaction with external exposure. Integration of longitudinal and concurrent measures in regression with Mendelian randomization highlights the complexity of metabolic regulation of weight gain, suggesting caution in interpretation of epidemiologic or genetic effect estimates traditionally used in metabolic research.


Subject(s)
Body Mass Index , Weight Gain , Humans , Male , Female , Adult , Obesity/metabolism , Obesity/genetics , Young Adult , Metabolomics , Energy Metabolism , Proteomics/methods , Gastrointestinal Microbiome , Metabolome
6.
Am J Med ; 137(6): 552-558, 2024 06.
Article in English | MEDLINE | ID: mdl-38492767
7.
Radiol Imaging Cancer ; 6(2): e230080, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38334471

ABSTRACT

Purpose To determine if microwave ablation (MWA) of retroperitoneal tumors can safely provide high rates of local tumor control. Materials and Methods This retrospective study included 19 patients (median age, 65 years [range = 46-78 years]; 13 [68.4%] men and six [31.6%] women) with 29 retroperitoneal tumors treated over 22 MWA procedures. Hydrodissection (0.9% saline with 2% iohexol) was injected in 17 of 22 (77.3%) procedures to protect nontarget anatomy. The primary outcomes evaluated were local tumor progression (LTP) and complication rates. Oncologic outcomes, including overall survival (OS), progression-free survival (PFS), and treatment-free interval (TFI), were examined as secondary outcome measures. Results Median follow-up was 18 months (range = 0.5-113). Hydrodissection was successful in displacing nontarget anatomy in 16 of 17 (94.1%) procedures. The LTP rate was 3.4% (one of 29; 95% CI: 0.1, 17.8) per tumor and 5.3% (one of 19; 95% CI: 0.1, 26.0) per patient. The overall complication rate per patient was 15.8% (three of 19), including two minor complications and one major complication. The OS rate at 1, 2, and 3 years was 81.8%, 81.8%, and 72.7%, respectively, with a median OS estimated at greater than 7 years. There was no evidence of a difference in OS (P = .34) and PFS (P = .56) between patients with renal cell carcinoma (six of 19 [31.6%]) versus other tumors (13 of 19 [68.4%]) and patients treated with no evidence of disease (15 of 22 [68.2%]) versus patients with residual tumors (seven of 22 [31.8%]). Median TFI was 18 months (range = 0.5-108). Conclusion Treatment of retroperitoneal tumors with MWA combined with hydrodissection provided high rates of local control, prolonged systemic therapy-free intervals, and few serious complications. Keywords: Ablation Techniques (ie, Radiofrequency, Thermal, Chemical), Retroperitoneum, Microwave Ablation, Hydrodissection © RSNA, 2024.


Subject(s)
Kidney Neoplasms , Retroperitoneal Neoplasms , Male , Humans , Female , Middle Aged , Aged , Retroperitoneal Neoplasms/diagnostic imaging , Retroperitoneal Neoplasms/radiotherapy , Retroperitoneal Neoplasms/surgery , Treatment Outcome , Microwaves/therapeutic use , Retrospective Studies , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/surgery
8.
Int J Qual Health Care ; 36(1)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38408270

ABSTRACT

Guidelines for cardiac catheterization in patients with non-specific chest pain (NSCP) provide significant room for provider discretion, which has resulted in variability in the utilization of invasive coronary angiograms (CAs) and a high rate of normal angiograms. The overutilization of CAs in patients with NSCP and discharged without a diagnosis of coronary artery disease is an important issue in medical care quality. As a result, we sought to identify patient demographic, socioeconomic, and geographic factors that influenced the performance of a CA in patients with NSCP who were discharged without a diagnosis of coronary artery disease. We intended to establish reference data points for gauging the success of new initiatives for the evaluation of this patient population. In this 20-year retrospective cohort study (1994-2014), we examined 107 796 patients with NSCP from the Myocardial Infarction Data Acquisition System, a large statewide validated database that contains discharge data for all patients with cardiovascular disease admitted to every non-federal hospital in NJ. Patients were partitioned into two groups: those offered a CA (CA group; n = 12 541) and those that were not (No-CA group; n = 95 255). Geographic, demographic, and socioeconomic variables were compared between the two groups using multivariable logistic regression, which determined the predictive value of each categorical variable on the odds of receiving a CA. Whites were more likely than Blacks and other racial counterparts (19.7% vs. 5.6% and 16.5%, respectively; P < .001) to receive a CA. Geographically, patients who received a CA were more likely admitted to a large hospital compared to small- or medium-sized ones (12.5% vs. 8.9% and 9.7%, respectively; P < .05), a primary teaching institution rather than a teaching affiliate or community center (16.1 % vs. 14.3% and 9.1%, respectively; P < .001), and at a non-rural facility compared to a rural one (12.1% vs. 6.5%; P < .001). Lastly from a socioeconomic standpoint, patients with commercial insurance more often received a CA compared to those having Medicare or Medicaid/self-pay (13.7% vs. 9.5% and 6.0%, respectively; P < .001). The utilization of CA in patients with NSCP discharged without a diagnosis of coronary artery disease in NJ during the study period may be explained by differences in geographic, demographic, and socioeconomic factors. Patients with NSCP should be well scrutinized for CA eligibility, and reliable strategies are needed to reduce discretionary medical decisions and improve quality of care.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Aged , Humans , United States , Coronary Artery Disease/diagnostic imaging , Coronary Angiography , Retrospective Studies , Medicare , Chest Pain/diagnostic imaging , Chest Pain/epidemiology
9.
J Cell Physiol ; 239(4): e31204, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38419397

ABSTRACT

Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca2+, lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein. In the present study, we tested the hypothesis that Opa1 downregulation in skeletal muscle cells alters MERC formation by evaluating multiple myocyte systems, including from mice and Drosophila, and in primary myotubes. Our results revealed that OPA1 deficiency induced tighter and more frequent MERCs in concert with a greater abundance of MERC proteins involved in calcium exchange. Additionally, loss of OPA1 increased the expression of activating transcription factor 4 (ATF4), an integrated stress response (ISR) pathway effector. Reducing Atf4 expression prevented the OPA1-loss-induced tightening of MERC structures. OPA1 reduction was associated with decreased mitochondrial and sarcoplasmic reticulum, a specialized form of ER, calcium, which was reversed following ATF4 repression. These data suggest that mitochondrial stress, induced by OPA1 deficiency, regulates skeletal muscle MERC formation in an ATF4-dependent manner.


Subject(s)
Activating Transcription Factor 4 , Neurodegenerative Diseases , Animals , Mice , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Lipids , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Neurodegenerative Diseases/pathology , Male , Mice, Inbred C57BL , Cells, Cultured , GTP Phosphohydrolases/metabolism
10.
Cardiovasc Res ; 120(6): 596-611, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38198753

ABSTRACT

AIMS: A mechanistic link between depression and risk of arrhythmias could be attributed to altered catecholamine metabolism in the heart. Monoamine oxidase-A (MAO-A), a key enzyme involved in catecholamine metabolism and longstanding antidepressant target, is highly expressed in the myocardium. The present study aimed to elucidate the functional significance and underlying mechanisms of cardiac MAO-A in arrhythmogenesis. METHODS AND RESULTS: Analysis of the TriNetX database revealed that depressed patients treated with MAO inhibitors had a lower risk of arrhythmias compared with those treated with selective serotonin reuptake inhibitors. This effect was phenocopied in mice with cardiomyocyte-specific MAO-A deficiency (cMAO-Adef), which showed a significant reduction in both incidence and duration of catecholamine stress-induced ventricular tachycardia compared with wild-type mice. Additionally, cMAO-Adef cardiomyocytes exhibited altered Ca2+ handling under catecholamine stimulation, with increased diastolic Ca2+ reuptake, reduced diastolic Ca2+ leak, and diminished systolic Ca2+ release. Mechanistically, cMAO-Adef hearts had reduced catecholamine levels under sympathetic stress, along with reduced levels of reactive oxygen species and protein carbonylation, leading to decreased oxidation of Type II PKA and CaMKII. These changes potentiated phospholamban (PLB) phosphorylation, thereby enhancing diastolic Ca2+ reuptake, while reducing ryanodine receptor 2 (RyR2) phosphorylation to decrease diastolic Ca2+ leak. Consequently, cMAO-Adef hearts exhibited lower diastolic Ca2+ levels and fewer arrhythmogenic Ca2+ waves during sympathetic overstimulation. CONCLUSION: Cardiac MAO-A inhibition exerts an anti-arrhythmic effect by enhancing diastolic Ca2+ handling under catecholamine stress.


Subject(s)
Calcium , Catecholamines , Monoamine Oxidase , Tachycardia, Ventricular , Animals , Female , Humans , Male , Mice , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Catecholamines/metabolism , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Diastole/drug effects , Disease Models, Animal , Heart Rate/drug effects , Mice, Inbred C57BL , Mice, Knockout , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phosphorylation , Reactive Oxygen Species/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Tachycardia, Ventricular/enzymology , Tachycardia, Ventricular/physiopathology
11.
EMBO J ; 43(3): 362-390, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212381

ABSTRACT

Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD+) availability in cardiomyocytes. NAD+ deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD+ precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD+ levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD+.


Subject(s)
Heart Failure , Mitochondrial Diseases , Humans , NAD/metabolism , NF-kappa B/metabolism , Sequestosome-1 Protein/genetics , Homeostasis , Autophagy , Nicotinamide Mononucleotide
12.
J Am Heart Assoc ; 13(3): e033553, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38293923

ABSTRACT

BACKGROUND: Alveolar hypoxia is protective in the context of cardiovascular and ischemic heart disease; however, the underlying mechanisms are incompletely understood. The present study sought to test the hypothesis that hypoxia is cardioprotective in left ventricular pressure overload (LVPO)-induced heart failure. We furthermore aimed to test that overlapping mechanisms promote cardiac recovery in heart failure patients following left ventricular assist device-mediated mechanical unloading and circulatory support. METHODS AND RESULTS: We established a novel murine model of combined chronic alveolar hypoxia and LVPO following transverse aortic constriction (HxTAC). The HxTAC model is resistant to cardiac hypertrophy and the development of heart failure. The cardioprotective mechanisms identified in our HxTAC model include increased activation of HIF (hypoxia-inducible factor)-1α-mediated angiogenesis, attenuated induction of genes associated with pathological remodeling, and preserved metabolic gene expression as identified by RNA sequencing. Furthermore, LVPO decreased Tbx5 and increased Hsd11b1 mRNA expression under normoxic conditions, which was attenuated under hypoxic conditions and may induce additional hypoxia-mediated cardioprotective effects. Analysis of samples from patients with advanced heart failure that demonstrated left ventricular assist device-mediated myocardial recovery revealed a similar expression pattern for TBX5 and HSD11B1 as observed in HxTAC hearts. CONCLUSIONS: Hypoxia attenuates LVPO-induced heart failure. Cardioprotective pathways identified in the HxTAC model might also contribute to cardiac recovery following left ventricular assist device support. These data highlight the potential of our novel HxTAC model to identify hypoxia-mediated cardioprotective mechanisms and therapeutic targets that attenuate LVPO-induced heart failure and mediate cardiac recovery following mechanical circulatory support.


Subject(s)
Aortic Valve Stenosis , Heart Failure , Humans , Mice , Animals , Heart Failure/etiology , Cardiomegaly/metabolism , Myocardium/metabolism , Hypoxia/complications , Ventricular Remodeling , Disease Models, Animal
13.
Sci Rep ; 14(1): 1563, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238383

ABSTRACT

In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially by increasing FGF21 expression. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis under physiological stress by generating mice selectively lacking either Atf4 (ATF4 BKO) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum-fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue. Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum-fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis under fed conditions likely in a FGF21-independent manner, in part via increased amino acid uptake and metabolism.


Subject(s)
Activating Transcription Factor 4 , Fibroblast Growth Factors , Thermogenesis , Animals , Mice , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Amino Acids/metabolism , Cold Temperature , Mice, Inbred C57BL , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
14.
Diabetes ; 73(2): 151-161, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38241507

ABSTRACT

Mitochondria undergo repeated cycles of fusion and fission that regulate their size and shape by a process known as mitochondrial dynamics. Numerous studies have revealed the importance of this process in maintaining mitochondrial health and cellular homeostasis, particularly in highly metabolically active tissues such as skeletal muscle and the heart. Here, we review the literature on the relationship between mitochondrial dynamics and the pathophysiology of type 2 diabetes and cardiovascular disease (CVD). Importantly, we emphasize divergent outcomes resulting from downregulating distinct mitochondrial dynamics proteins in various tissues. This review underscores compensatory mechanisms and adaptive pathways that offset potentially detrimental effects, resulting instead in improved metabolic health. Finally, we offer a perspective on potential therapeutic implications of modulating mitochondrial dynamics proteins for treatment of diabetes and CVD.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Diabetes Mellitus, Type 2/metabolism , Mitochondrial Dynamics , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Mitochondrial Proteins/metabolism
15.
IEEE Trans Nanobioscience ; 23(1): 157-166, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37549091

ABSTRACT

This paper reports a sensor architecture for continuous monitoring of biomarkers directly in the blood, especially for ICU/CCU patients requiring critical care and rapid biomarker measurement. The sensor is based on a simple optical fiber that can be inserted through a catheter into the bloodstream, wherein gold nanoparticles are attached at its far distal end as a plasmonic material for highly sensitive opto-chemical sensing of target biomolecules (glucose in our application) via the excitation of surface plasmon polaritons. For specificity, the nanoparticles are functionalized with a specific receptor enzyme that enables the localized surface plasmon resonance (LSPR)-based targeted bio-sensing. Further, a micro dialysis probe is introduced in the proposed architecture, which facilitates continuous monitoring for an extended period without fouling the sensor surface with cells and blood debris present in whole blood, leading to prolonged enhanced sensitivity and limit of detection, relative to existing state-of-the-art continuous monitoring devices that can conduct direct measurements in blood. To establish this proof-of-concept, we tested the sensor device to monitor glucose in-vivo involving an animal model, where continuous monitoring was done directly in the circulation of living rats. The sensor's sensitivity to glucose was found to be 0.0354 a.u./mg.dl-1 with a detection limit of 50.89 mg/dl.


Subject(s)
Metal Nanoparticles , Optical Fibers , Humans , Animals , Rats , Blood Glucose , Blood Glucose Self-Monitoring , Gold/chemistry , Metal Nanoparticles/chemistry , Surface Plasmon Resonance , Glucose , Intensive Care Units
16.
Eur Urol Oncol ; 7(2): 266-274, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37442673

ABSTRACT

BACKGROUND: Careful patient selection is critical when considering cytoreductive nephrectomy (CN) for metastatic renal cell carcinoma (mRCC) but few studies have investigated the prognostic value of radiologic features that measure tumor burden. OBJECTIVE: To develop a prognostic model to improve CN selection with integration of common radiologic features with known prognostic factors associated with mortality in the first year following surgery. DESIGN, SETTINGS, AND PARTICIPANTS: Data were analyzed for consecutive patients with mRCC treated with upfront CN at five institutions from 2006 to 2017. Univariable and multivariable models were used to evaluate radiographic features and known risk factors for associations with overall survival. Relevant factors were used to create the SCREEN model and compared to the International mRCC Database Consortium (IMDC) model for predictive accuracy and clinical usefulness. RESULTS AND LIMITATIONS: A total of 914 patients with mRCC were treated with upfront CN during the study period. Seven independently predictive variables were used in the SCREEN score: three or more metastatic sites, total metastatic tumor burden ≥5 cm, bone metastasis, systemic symptoms, low serum hemoglobin, low serum albumin, and neutrophil/lymphocyte ratio ≥4. Predictive accuracy measured as the area under the receiver operating characteristic curves was 0.76 for the SCREEN score and 0.55 for the IMDC model. Decision curve analysis showed that the SCREEN model was useful beyond the IMDC classifier for threshold first-year mortality probabilities between 15% and 70%. CONCLUSIONS: The SCREEN score had higher predictive accuracy for first-year mortality compared to the IMDC scheme in a multi-institutional cohort and may be used to improve CN selection. PATIENT SUMMARY: This study provides a model to improve selection of patients with metastatic kidney cancer who may benefit from surgical removal of the primary kidney tumor. We found that radiographic measurements of the tumor burden predicted the risk of death in the first year after surgery. The model can be used to improve decision-making by these patients and their physicians.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/surgery , Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/surgery , Cytoreduction Surgical Procedures/methods , Retrospective Studies , Nephrectomy/methods , Risk Assessment
18.
Circ Res ; 134(2): 143-161, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38156445

ABSTRACT

BACKGROUND: Single-nucleotide polymorphisms linked with the rs1474868 T allele (MFN2 [mitofusin-2] T/T) in the human mitochondrial fusion protein MFN2 gene are associated with reduced platelet MFN2 RNA expression and platelet counts. This study investigates the impact of MFN2 on megakaryocyte and platelet biology. METHODS: Mice with megakaryocyte/platelet deletion of Mfn2 (Mfn2-/- [Mfn2 conditional knockout]) were generated using Pf4-Cre crossed with floxed Mfn2 mice. Human megakaryocytes were generated from cord blood and platelets isolated from healthy subjects genotyped for rs1474868. Ex vivo approaches assessed mitochondrial morphology, function, and platelet activation responses. In vivo measurements included endogenous/transfused platelet life span, tail bleed time, transient middle cerebral artery occlusion, and pulmonary vascular permeability/hemorrhage following lipopolysaccharide-induced acute lung injury. RESULTS: Mitochondria was more fragmented in megakaryocytes derived from Mfn2-/- mice and from human cord blood with MFN2 T/T genotype compared with control megakaryocytes. Human resting platelets of MFN2 T/T genotype had reduced MFN2 protein, diminished mitochondrial membrane potential, and an increased rate of phosphatidylserine exposure during ex vivo culture. Platelet counts and platelet life span were reduced in Mfn2-/- mice accompanied by an increased rate of phosphatidylserine exposure in resting platelets, especially aged platelets, during ex vivo culture. Mfn2-/- also decreased platelet mitochondrial membrane potential (basal) and activated mitochondrial oxygen consumption rate, reactive oxygen species generation, calcium flux, platelet-neutrophil aggregate formation, and phosphatidylserine exposure following dual agonist activation. Ultimately, Mfn2-/- mice showed prolonged tail bleed times, decreased ischemic stroke infarct size after cerebral ischemia-reperfusion, and exacerbated pulmonary inflammatory hemorrhage following lipopolysaccharide-induced acute lung injury. Analysis of MFN2 SNPs in the iSPAAR study (Identification of SNPs Predisposing to Altered ALI Risk) identified a significant association between MFN2 and 28-day mortality in patients with acute respiratory distress syndrome. CONCLUSIONS: Mfn2 preserves mitochondrial phenotypes in megakaryocytes and platelets and influences platelet life span, function, and outcomes of stroke and lung injury.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Aged , Animals , Humans , Mice , Acute Lung Injury/metabolism , Blood Platelets/metabolism , Hemorrhage/metabolism , Mitochondria/metabolism , Phosphatidylserines/metabolism
19.
Front Immunol ; 14: 1186188, 2023.
Article in English | MEDLINE | ID: mdl-37790926

ABSTRACT

The development of vaccine adjuvants is of interest for the management of chronic diseases, cancer, and future pandemics. Therefore, the role of Toll-like receptors (TLRs) in the effects of vaccine adjuvants has been investigated. TLR4 ligand-based adjuvants are the most frequently used adjuvants for human vaccines. Among TLR family members, TLR4 has unique dual signaling capabilities due to the recruitment of two adapter proteins, myeloid differentiation marker 88 (MyD88) and interferon-ß adapter inducer containing the toll-interleukin-1 receptor (TIR) domain (TRIF). MyD88-mediated signaling triggers a proinflammatory innate immune response, while TRIF-mediated signaling leads to an adaptive immune response. Most studies have used lipopolysaccharide-based ligands as TLR4 ligand-based adjuvants; however, although protein-based ligands have been proven advantageous as adjuvants, their mechanisms of action, including their ability to undergo structural modifications to achieve optimal immunogenicity, have been explored less thoroughly. In this work, we characterized the effects of two protein-based adjuvants (PBAs) on TLR4 signaling via the recruitment of MyD88 and TRIF. As models of TLR4-PBAs, we used hemocyanin from Fissurella latimarginata (FLH) and a recombinant surface immunogenic protein (rSIP) from Streptococcus agalactiae. We determined that rSIP and FLH are partial TLR4 agonists, and depending on the protein agonist used, TLR4 has a unique bias toward the TRIF or MyD88 pathway. Furthermore, when characterizing gene products with MyD88 and TRIF pathway-dependent expression, differences in TLR4-associated signaling were observed. rSIP and FLH require MyD88 and TRIF to activate nuclear factor kappa beta (NF-κB) and interferon regulatory factor (IRF). However, rSIP and FLH have a specific pattern of interleukin 6 (IL-6) and interferon gamma-induced protein 10 (IP-10) secretion associated with MyD88 and TRIF recruitment. Functionally, rSIP and FLH promote antigen cross-presentation in a manner dependent on TLR4, MyD88 and TRIF signaling. However, FLH activates a specific TRIF-dependent signaling pathway associated with cytokine expression and a pathway dependent on MyD88 and TRIF recruitment for antigen cross-presentation. Finally, this work supports the use of these TLR4-PBAs as clinically useful vaccine adjuvants that selectively activate TRIF- and MyD88-dependent signaling to drive safe innate immune responses and vigorous Th1 adaptive immune responses.


Subject(s)
Myeloid Differentiation Factor 88 , Toll-Like Receptor 4 , Humans , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/metabolism , Hemocyanins/metabolism , Streptococcus agalactiae , Ligands , Membrane Proteins/metabolism , Adjuvants, Vaccine , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Adjuvants, Immunologic/pharmacology , Adaptor Proteins, Vesicular Transport/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...