Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Neuroeng Rehabil ; 19(1): 53, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35659259

ABSTRACT

OBJECTIVE: The objective of this study was to develop a portable and modular brain-computer interface (BCI) software platform independent of input and output devices. We implemented this platform in a case study of a subject with cervical spinal cord injury (C5 ASIA A). BACKGROUND: BCIs can restore independence for individuals with paralysis by using brain signals to control prosthetics or trigger functional electrical stimulation. Though several studies have successfully implemented this technology in the laboratory and the home, portability, device configuration, and caregiver setup remain challenges that limit deployment to the home environment. Portability is essential for transitioning BCI from the laboratory to the home. METHODS: The BCI platform implementation consisted of an Activa PC + S generator with two subdural four-contact electrodes implanted over the dominant left hand-arm region of the sensorimotor cortex, a minicomputer fixed to the back of the subject's wheelchair, a custom mobile phone application, and a mechanical glove as the end effector. To quantify the performance for this at-home implementation of the BCI, we quantified system setup time at home, chronic (14-month) decoding accuracy, hardware and software profiling, and Bluetooth communication latency between the App and the minicomputer. We created a dataset of motor-imagery labeled signals to train a binary motor imagery classifier on a remote computer for online, at-home use. RESULTS: Average bluetooth data transmission delay between the minicomputer and mobile App was 23 ± 0.014 ms. The average setup time for the subject's caregiver was 5.6 ± 0.83 min. The average times to acquire and decode neural signals and to send those decoded signals to the end-effector were respectively 404.1 ms and 1.02 ms. The 14-month median accuracy of the trained motor imagery classifier was 87.5 ± 4.71% without retraining. CONCLUSIONS: The study presents the feasibility of an at-home BCI system that subjects can seamlessly operate using a friendly mobile user interface, which does not require daily calibration nor the presence of a technical person for at-home setup. The study also describes the portability of the BCI system and the ability to plug-and-play multiple end effectors, providing the end-user the flexibility to choose the end effector to accomplish specific motor tasks for daily needs. Trial registration ClinicalTrials.gov: NCT02564419. First posted on 9/30/2015.


Subject(s)
Brain-Computer Interfaces , Cervical Cord , Spinal Cord Injuries , Electroencephalography , Hand , Humans , Imagery, Psychotherapy , User-Computer Interface
2.
Brain Commun ; 3(4): fcab248, 2021.
Article in English | MEDLINE | ID: mdl-34870202

ABSTRACT

Loss of hand function after cervical spinal cord injury severely impairs functional independence. We describe a method for restoring volitional control of hand grasp in one 21-year-old male subject with complete cervical quadriplegia (C5 American Spinal Injury Association Impairment Scale A) using a portable fully implanted brain-computer interface within the home environment. The brain-computer interface consists of subdural surface electrodes placed over the dominant-hand motor cortex and connects to a transmitter implanted subcutaneously below the clavicle, which allows continuous reading of the electrocorticographic activity. Movement-intent was used to trigger functional electrical stimulation of the dominant hand during an initial 29-weeks laboratory study and subsequently via a mechanical hand orthosis during in-home use. Movement-intent information could be decoded consistently throughout the 29-weeks in-laboratory study with a mean accuracy of 89.0% (range 78-93.3%). Improvements were observed in both the speed and accuracy of various upper extremity tasks, including lifting small objects and transferring objects to specific targets. At-home decoding accuracy during open-loop trials reached an accuracy of 91.3% (range 80-98.95%) and an accuracy of 88.3% (range 77.6-95.5%) during closed-loop trials. Importantly, the temporal stability of both the functional outcomes and decoder metrics were not explored in this study. A fully implanted brain-computer interface can be safely used to reliably decode movement-intent from motor cortex, allowing for accurate volitional control of hand grasp.

3.
Front Med (Lausanne) ; 8: 719512, 2021.
Article in English | MEDLINE | ID: mdl-34722563

ABSTRACT

Multimodal general anesthesia (MMGA) is a strategy that utilizes the well-known neuroanatomy and neurophysiology of nociception and arousal control in designing a rational and clinical practical paradigm to regulate the levels of unconsciousness and antinociception during general anesthesia while mitigating side effects of any individual anesthetic. We sought to test the feasibility of implementing MMGA for seniors undergoing cardiac surgery, a high-risk cohort for hemodynamic instability, delirium, and post-operative cognitive dysfunction. Twenty patients aged 60 or older undergoing on-pump coronary artery bypass graft (CABG) surgery or combined CABG/valve surgeries were enrolled in this non-randomized prospective observational feasibility trial, wherein we developed MMGA specifically for cardiac surgeries. Antinociception was achieved by a combination of intravenous remifentanil, ketamine, dexmedetomidine, and magnesium together with bupivacaine administered as a pecto-intercostal fascial block. Unconsciousness was achieved by using electroencephalogram (EEG)-guided administration of propofol along with the sedative effects of the antinociceptive agents. EEG-guided MMGA anesthesia was safe and feasible for cardiac surgeries, and exploratory analyses found hemodynamic stability and vasopressor usage comparable to a previously collected cohort. Intraoperative EEG suppression events and postoperative delirium were found to be rare. We report successful use of a total intravenous anesthesia (TIVA)-based MMGA strategy for cardiac surgery and establish safety and feasibility for studying MMGA in a full clinical trial. Clinical Trial Number: www.clinicaltrials.gov; identifier NCT04016740 (https://clinicaltrials.gov/ct2/show/NCT04016740).

4.
Front Psychol ; 12: 673529, 2021.
Article in English | MEDLINE | ID: mdl-34177731

ABSTRACT

Burst-suppression electroencephalography (EEG) patterns of electrical activity, characterized by intermittent high-power broad-spectrum oscillations alternating with isoelectricity, have long been observed in the human brain during general anesthesia, hypothermia, coma and early infantile encephalopathy. Recently, commonalities between conditions associated with burst-suppression patterns have led to new insights into the origin of burst-suppression EEG patterns, their effects on the brain, and their use as a therapeutic tool for protection against deleterious neural states. These insights have been further supported by advances in mechanistic modeling of burst suppression. In this Perspective, we review the origins of burst-suppression patterns and use recent insights to weigh evidence in the controversy regarding the extent to which burst-suppression patterns observed during profound anesthetic-induced brain inactivation are associated with adverse clinical outcomes. Whether the clinical intent is to avoid or maintain the brain in a state producing burst-suppression patterns, monitoring and controlling neural activity presents a technical challenge. We discuss recent advances that enable monitoring and control of burst suppression.

5.
PLoS One ; 16(5): e0246165, 2021.
Article in English | MEDLINE | ID: mdl-33956800

ABSTRACT

In current anesthesiology practice, anesthesiologists infer the state of unconsciousness without directly monitoring the brain. Drug- and patient-specific electroencephalographic (EEG) signatures of anesthesia-induced unconsciousness have been identified previously. We applied machine learning approaches to construct classification models for real-time tracking of unconscious state during anesthesia-induced unconsciousness. We used cross-validation to select and train the best performing models using 33,159 2s segments of EEG data recorded from 7 healthy volunteers who received increasing infusions of propofol while responding to stimuli to directly assess unconsciousness. Cross-validated models of unconsciousness performed very well when tested on 13,929 2s EEG segments from 3 left-out volunteers collected under the same conditions (median volunteer AUCs 0.99-0.99). Models showed strong generalization when tested on a cohort of 27 surgical patients receiving solely propofol collected in a separate clinical dataset under different circumstances and using different hardware (median patient AUCs 0.95-0.98), with model predictions corresponding with actions taken by the anesthesiologist during the cases. Performance was also strong for 17 patients receiving sevoflurane (alone or in addition to propofol) (median AUCs 0.88-0.92). These results indicate that EEG spectral features can predict unconsciousness, even when tested on a different anesthetic that acts with a similar neural mechanism. With high performance predictions of unconsciousness, we can accurately monitor anesthetic state, and this approach may be used to engineer infusion pumps to intelligibly respond to patients' neural activity.


Subject(s)
Electroencephalography , Machine Learning , Signal Processing, Computer-Assisted , Unconsciousness/physiopathology , Anesthetics, Intravenous/pharmacology , Brain/drug effects , Brain/physiopathology , Electroencephalography/drug effects , Humans , Male , Sevoflurane/adverse effects , Unconsciousness/chemically induced
6.
Neuron ; 108(1): 164-179.e7, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32768389

ABSTRACT

The suprachiasmatic nucleus (SCN) acts as a master pacemaker driving circadian behavior and physiology. Although the SCN is small, it is composed of many cell types, making it difficult to study the roles of particular cells. Here we develop bioluminescent circadian reporter mice that are Cre dependent, allowing the circadian properties of genetically defined populations of cells to be studied in real time. Using a Color-Switch PER2::LUCIFERASE reporter that switches from red PER2::LUCIFERASE to green PER2::LUCIFERASE upon Cre recombination, we assess circadian rhythms in two of the major classes of peptidergic neurons in the SCN: AVP (arginine vasopressin) and VIP (vasoactive intestinal polypeptide). Surprisingly, we find that circadian function in AVP neurons, not VIP neurons, is essential for autonomous network synchrony of the SCN and stability of circadian rhythmicity.


Subject(s)
Arginine Vasopressin/metabolism , Circadian Rhythm , Nerve Net/metabolism , Period Circadian Proteins/genetics , Suprachiasmatic Nucleus Neurons/metabolism , Vasoactive Intestinal Peptide/metabolism , ARNTL Transcription Factors/genetics , Animals , Gene Knockout Techniques , Luciferases , Mice , Mice, Transgenic , Period Circadian Proteins/metabolism , Single-Cell Analysis , Suprachiasmatic Nucleus/metabolism , Time-Lapse Imaging
7.
Science ; 368(6492): 746-753, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32409471

ABSTRACT

Malarial rhythmic fevers are the consequence of the synchronous bursting of red blood cells (RBCs) on completion of the malaria parasite asexual cell cycle. Here, we hypothesized that an intrinsic clock in the parasite Plasmodium chabaudi underlies the 24-hour-based rhythms of RBC bursting in mice. We show that parasite rhythms are flexible and lengthen to match the rhythms of hosts with long circadian periods. We also show that malaria rhythms persist even when host food intake is evenly spread across 24 hours, suggesting that host feeding cues are not required for synchrony. Moreover, we find that the parasite population remains synchronous and rhythmic even in an arrhythmic clock mutant host. Thus, we propose that parasite rhythms are generated by the parasite, possibly to anticipate its circadian environment.


Subject(s)
Circadian Rhythm/physiology , Fever/physiopathology , Fever/parasitology , Host-Parasite Interactions/physiology , Malaria/physiopathology , Malaria/parasitology , Plasmodium chabaudi/physiology , Animals , CLOCK Proteins/genetics , Circadian Rhythm/genetics , Cues , Darkness , Eating , Erythrocytes/parasitology , Feeding Behavior , Gene Expression Regulation , Host-Parasite Interactions/genetics , Mice , Mice, Mutant Strains , Plasmodium chabaudi/genetics , Transcription, Genetic
8.
Proc IFAC World Congress ; 53(2): 15870-15876, 2020.
Article in English | MEDLINE | ID: mdl-34184002

ABSTRACT

Significant effort toward the automation of general anesthesia has been made in the past decade. One open challenge is in the development of control-ready patient models for closed-loop anesthesia delivery. Standard depth-of-anesthesia tracking does not readily capture inter-individual differences in response to anesthetics, especially those due to age, and does not aim to predict a relationship between a control input (infused anesthetic dose) and system state (commonly, a function of electroencephalography (EEG) signal). In this work, we developed a control-ready patient model for closed-loop propofol-induced anesthesia using data recorded during a clinical study of EEG during general anesthesia in ten healthy volunteers. We used principal component analysis to identify the low-dimensional state-space in which EEG signal evolves during anesthesia delivery. We parameterized the response of the EEG signal to changes in propofol target-site concentration using logistic models. We note that inter-individual differences in anesthetic sensitivity may be captured by varying a constant cofactor of the predicted effect-site concentration. We linked the EEG dose-response with the control input using a pharmacokinetic model. Finally, we present a simple nonlinear model predictive control in silico demonstration of how such a closed-loop system would work.

9.
Proc IFAC World Congress ; 53(2): 15898-15903, 2020.
Article in English | MEDLINE | ID: mdl-34184003

ABSTRACT

Closed loop anesthesia delivery (CLAD) systems can help anesthesiologists efficiently achieve and maintain desired anesthetic depth over an extended period of time. A typical CLAD system would use an anesthetic marker, calculated from physiological signals, as real-time feedback to adjust anesthetic dosage towards achieving a desired set-point of the marker. Since control strategies for CLAD vary across the systems reported in recent literature, a comparative analysis of common control strategies can be useful. For a nonlinear plant model based on well-established models of compartmental pharmacokinetics and sigmoid-Emax pharmacodynamics, we numerically analyze the set-point tracking performance of three output-feedback linear control strategies: proportional-integral-derivative (PID) control, linear quadratic Gaussian (LQG) control, and an LQG with integral action (ILQG). Specifically, we numerically simulate multiple CLAD sessions for the scenario where the plant model parameters are unavailable for a patient and the controller is designed based on a nominal model and controller gains are held constant throughout a session. Based on the numerical analyses performed here, conditioned on our choice of model and controllers, we infer that in terms of accuracy and bias PID control performs better than ILQG which in turn performs better than LQG. In the case of noisy observations, ILQG can be tuned to provide a smoother infusion rate while achieving comparable steady state response with respect to PID. The numerical analysis framework and findings reported here can help CLAD developers in their choice of control strategies. This paper may also serve as a tutorial paper for teaching control theory for CLAD.

10.
Curr Opin Physiol ; 15: 37-46, 2020 Jun.
Article in English | MEDLINE | ID: mdl-34485783

ABSTRACT

In the past few decades, advances in understanding sleep-wake neurophysiology have occurred hand-in-hand with advances in mathematical modeling of sleep and wake. In this review, we summarize recent updates in modeling the timing and durations of sleep and wake, the underlying neurophysiology of sleep and wake, and the application of these models in understanding cognition and disease. Throughout, we highlight the role modeling has played in developing our understanding of sleep and its underlying mechanisms. We present open questions and controversies in the field and propose the utility of individualized models of sleep for precision sleep medicine.

11.
Automatica (Oxf) ; 100: 336-348, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31673164

ABSTRACT

The widespread adoption of closed-loop control in systems biology has resulted from improvements in sensors, computing, actuation, and the discovery of alternative sites of targeted drug delivery. Most control algorithms for circadian phase resetting exploit light inputs. However, recently identified small-molecule pharmaceuticals offer advantages in terms of invasiveness and potency of actuation. Herein, we develop a systematic method to control the phase of biological oscillations motivated by the recently identified small molecule circadian pharmaceutical KL001. The model-based control architecture exploits an infinitesimal parametric phase response curve (ipPRC) that is used to predict the effect of control inputs on future phase trajectories of the oscillator. The continuous time optimal control policy is first derived for phase resetting, based on the ipPRC and Pontryagin's maximum principle. Owing to practical challenges in implementing a continuous time optimal control policy, we investigate the effect of implementing the continuous time policy in a sampled time format. Specifically, we provide bounds on the errors incurred by the physiologically tractable sampled time control law. We use these results to select directions of resetting (i.e. phase advance or delay), sampling intervals, and prediction horizons for a nonlinear model predictive control (MPC) algorithm for phase resetting. The potential of this ipPRC-informed pharmaceutical nonlinear MPC is then demonstrated in silico using real-world scenarios of jet lag or rotating shift work.

12.
Neuron ; 99(3): 555-563.e5, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30017392

ABSTRACT

The mammalian suprachiasmatic nucleus (SCN) functions as a master circadian pacemaker, integrating environmental input to align physiological and behavioral rhythms to local time cues. Approximately 10% of SCN neurons express vasoactive intestinal polypeptide (VIP); however, it is unknown how firing activity of VIP neurons releases VIP to entrain circadian rhythms. To identify physiologically relevant firing patterns, we optically tagged VIP neurons and characterized spontaneous firing over 3 days. VIP neurons had circadian rhythms in firing rate and exhibited two classes of instantaneous firing activity. We next tested whether physiologically relevant firing affected circadian rhythms through VIP release. We found that VIP neuron stimulation with high, but not low, frequencies shifted gene expression rhythms in vitro through VIP signaling. In vivo, high-frequency VIP neuron activation rapidly entrained circadian locomotor rhythms. Thus, increases in VIP neuronal firing frequency release VIP and entrain molecular and behavioral circadian rhythms. VIDEO ABSTRACT.


Subject(s)
Action Potentials/physiology , Circadian Rhythm/physiology , Suprachiasmatic Nucleus Neurons/metabolism , Vasoactive Intestinal Peptide/metabolism , Animals , Cells, Cultured , Female , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Neuropeptides/metabolism , Organ Culture Techniques , Suprachiasmatic Nucleus/metabolism
13.
J Neurosci ; 38(6): 1326-1334, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29054877

ABSTRACT

In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus coordinates daily rhythms including sleep-wake, hormone release, and gene expression. The cells of the SCN must synchronize to each other to drive these circadian rhythms in the rest of the body. The ontogeny of circadian cycling and intercellular coupling in the SCN remains poorly understood. Recent in vitro studies have recorded circadian rhythms from the whole embryonic SCN. Here, we tracked the onset and precision of rhythms in PERIOD2 (PER2), a clock protein, within the SCN isolated from embryonic and postnatal mice of undetermined sex. We found that a few SCN cells developed circadian periodicity in PER2 by 14.5 d after mating (E14.5) with no evidence for daily cycling on E13.5. On E15.5, the fraction of competent oscillators increased dramatically corresponding with stabilization of their circadian periods. The cells of the SCN harvested at E15.5 expressed sustained, synchronous daily rhythms. By postnatal day 2 (P2), SCN oscillators displayed the daily, dorsal-ventral phase wave in clock gene expression typical of the adult SCN. Strikingly, vasoactive intestinal polypeptide (VIP), a neuropeptide critical for synchrony in the adult SCN, and its receptor, VPAC2R, reached detectable levels after birth and after the onset of circadian synchrony. Antagonists of GABA or VIP signaling or action potentials did not disrupt circadian synchrony in the E15.5 SCN. We conclude that endogenous daily rhythms in the fetal SCN begin with few noisy oscillators on E14.5, followed by widespread oscillations that rapidly synchronize on E15.5 by an unknown mechanism.SIGNIFICANCE STATEMENT We recorded the onset of PER2 circadian oscillations during embryonic development in the mouse SCN. When isolated at E13.5, the anlagen of the SCN expresses high, arrhythmic PER2. In contrast, a few cells show noisy circadian rhythms in the isolated E14.5 SCN and most show reliable, self-sustained, synchronized rhythms in the E15.5 SCN. Strikingly, this synchrony at E15.5 appears before expression of VIP or its receptor and persists in the presence of blockers of VIP, GABA or neuronal firing. Finally, the dorsal-ventral phase wave of PER2 typical of the adult SCN appears ∼P2, indicating that multiple signals may mediate circadian synchrony during the ontogeny of the SCN.


Subject(s)
Circadian Rhythm/physiology , Suprachiasmatic Nucleus/physiology , Aging/genetics , Aging/physiology , Animals , Female , GABA Antagonists/pharmacology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Period Circadian Proteins/genetics , Period Circadian Proteins/physiology , Pregnancy , Receptors, Vasoactive Intestinal Peptide, Type II/biosynthesis , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Suprachiasmatic Nucleus/cytology , Suprachiasmatic Nucleus/growth & development , Vasoactive Intestinal Peptide/antagonists & inhibitors , Vasoactive Intestinal Peptide/metabolism , Vasoactive Intestinal Peptide/physiology
14.
Proc IFAC World Congress ; 50(1): 9864-9870, 2017 Jul.
Article in English | MEDLINE | ID: mdl-33842933

ABSTRACT

Recent in vitro studies have identified small-molecule pharmaceuticals effecting dose-dependent changes in the mammalian circadian clock, providing a novel avenue for control. Most studies employ light for clock control, however, pharmaceuticals are advantageous for clock manipulation through reduced invasiveness. In this paper, we employ a mechanistic model to predict the phase dynamics of the mammalian circadian oscillator under the effect of the pharmaceutical under investigation. These predictions are used to inform a constrained model predictive controller (MPC) to compute appropriate dosing for clock re-entrainment. Constraints in the formulation of the MPC problem arise from variation in the phase response curves (PRCs) describing drug effects, and are in many cases non-intuitive owing to the nonlinearity of oscillator phase response effects. We demonstrate through in-silico experiments that it is imperative to tune the MPC parameters based on the drug-specific PRC for optimal phase manipulation.

15.
Biomacromolecules ; 17(7): 2427-36, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27351270

ABSTRACT

We report a robust method to manufacture polyacrylamide-based functional hydrogel microspheres with readily tunable macroporous structures by utilizing a simple micromolding-based technique. Specifically, surface tension-induced droplet formation of aqueous solutions of chitosan and acrylamide in 2D-shaped micromolds followed by photoinduced polymerization leads to monodisperse microspheres. Pore sizes of the microspheres can be readily tuned by simple addition of inert long-chain poly(ethylene glycol) porogen at low content in the prepolymer solution. The as-prepared chitosan-polyacrylamide microspheres exhibit chemical functionality through chitosan's primary amines, rapid protein conjugation with selective tetrazine-trans-cyclooctene reaction, and nonfouling property. Combined with the potential to create anisotropic network structures, we envision that our simple fabrication-conjugation method would offer a potent route to manufacture a variety of biofunctionalized hydrogel microentities.


Subject(s)
Acrylic Resins/chemistry , Chitosan/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Microspheres , Proteins/chemistry , Humans , Polymerization , Porosity
16.
Langmuir ; 32(21): 5394-402, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27191399

ABSTRACT

Polymeric hydrogel microparticle-based suspension arrays with shape-based encoding offer powerful alternatives to planar and bead-based arrays toward high throughput biosensing and medical diagnostics. We report a simple and robust micromolding technique for polyacrylamide- (PAAm-) based biopolymeric-synthetic hybrid microparticles with controlled 2D shapes containing a potent aminopolysaccharide chitosan as an efficient conjugation handle uniformly incorporated in PAAm matrix. A postfabrication conjugation approach utilizing amine-reactive chemistries on the chitosan shows stable incorporation and retained chemical reactivity of chitosan, readily tunable macroporous structures via simple addition of low content long-chain PEG porogens for improved conjugation capacity and kinetics, and one-pot biomacromolecular assembly via bioorthogonal click reactions with minimal nonspecific binding. We believe that the integrated fabrication-conjugation approach reported here could offer promising routes to programmable manufacture of hydrogel microparticle-based biomacromolecular conjugation and biofunctionalization platforms for a large range of applications.

17.
Proc Natl Acad Sci U S A ; 113(16): 4512-7, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27044085

ABSTRACT

In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.


Subject(s)
Circadian Clocks/physiology , Nerve Net/metabolism , Suprachiasmatic Nucleus/metabolism , Animals , Genes, Reporter , Mice, Transgenic , Nerve Net/cytology , Suprachiasmatic Nucleus/cytology
18.
IEEE Life Sci Lett ; 2(3): 35-38, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28630888

ABSTRACT

GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.

19.
Chem Eng Res Des ; 116: 48-60, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28496287

ABSTRACT

The mammalian circadian clock is a complex multi-scale, multivariable biological control system. In the past two decades, methods from systems engineering have led to numerous insights into the architecture and functionality of this system. In this review, we examine the mammalian circadian system through a process systems lens. We present a mathematical framework for examining the cellular circadian oscillator, and show recent extensions for understanding population-scale dynamics. We provide an overview of the routes by which the circadian system can be systemically manipulated, and present in silico proof of concept results for phase resetting of the clock via model predictive control.

20.
Biophys J ; 107(11): 2712-22, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25468350

ABSTRACT

Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary differential equation models, and will lead to a better quantitative understanding of the factors that affect clock amplitude.


Subject(s)
Circadian Rhythm , Fibroblasts/metabolism , Genes, Reporter , Luminescent Measurements , Animals , Gene Expression Profiling , Mice , Models, Biological , NIH 3T3 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...