Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 45(4): 1631-1644, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29405301

ABSTRACT

PURPOSE: The purpose of this study is to develop and employ a Monte Carlo (MC) simulation model of associated particle neutron elemental imaging (APNEI) in order to determine the three-dimensional (3D) imaging resolution of such a system by examining relevant physical and technological parameters and to thereby begin to explore the range of clinical applicability of APNEI to fields such as medical diagnostics, intervention, and etiological research. METHODS: The presented APNEI model was defined in MCNP by a Gaussian-distributed and isotropic surface source emitting deuterium + deuterium (DD) neutrons, iron as the target element, nine iron-containing voxels (1 cm3 volume each) arranged in a 3-by-3 array as the interrogated volume of interest, and finally, by high-purity germanium (HPGe) gamma-ray detectors anterior and posterior to the 9-voxel array. The MCNP f8 pulse height tally was employed in conjunction with the PTRAC particle tracking function to not only determine the signal acquired from iron inelastic scatter gamma-rays but also to quantitate each of the nine target voxels' contribution to the overall iron signal - each detected iron inelastic scatter gamma-ray being traced to the source neutron which incited its emission. RESULTS: With the spatial, vector, and timing information of the series of events for each relevant neutron history as collected by PTRAC, realistic grayscale images of the distribution of iron concentration in the 9-voxel array were simulated in both the projective and depth dimensions. With an overall 225 ps timing resolution, 6.25 mm2 imaging plate pixels assumed to have well localized scintillation, and a DD neutron, Gaussian-distributed source spot with a diameter of 2 mm, projective and depth resolutions of < 1 cm and <3 cm are achievable, respectively, for iron-containing voxels on the order of 1,000 ppm Fe. CONCLUSIONS: The imaging resolution offered by APNEI of target elements such as iron lends itself to potential applications in disease diagnosis and treatment planning (high resolution) as well as to ordnance and contraband detection (low resolution). However, experimental study beyond simulation is required to optimize the layout and electronic configuration of APNEI system components - including realistic shielding and phantom materials - for background signal reduction in order to accurately determine the detection limits and spatial resolution of iron and other elements of interest on a case-by-case basis.


Subject(s)
Imaging, Three-Dimensional/methods , Monte Carlo Method , Neutrons , Computer Simulation
2.
Med Phys ; 43(11): 5964, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27806586

ABSTRACT

PURPOSE: The purpose of this study is to develop a Monte Carlo simulation model for in vivo associated particle neutron elemental imaging (APNEI) and to study the feasibility of using APNEI to determine the iron distribution in a human liver with the defined model. METHODS: The model presented in this study was defined in mcnp by the basic geometry of the human body, the use of D + D source neutrons, iron as the element of interest, an iron-containing voxel in the liver as the target region, and 2 large germanium detectors anterior and posterior to the trunk of the body. The f8 pulse height tally was employed in mcnp to determine the signal acquired from iron inelastic scatter gamma rays at various iron concentrations in the target liver voxel. Correspondingly, the f4 average flux tally in mcnp was modified by a dose function such that the equivalent dose to the whole liver and the effective dose to the whole body could be estimated and used as the basis for a limiting number of neutron histories which could feasibly allow for the collection of a sufficient volume of data to construct a 2D image of iron distribution in the liver voxel. RESULTS: Assuming an allowable equivalent dose to the liver of 5 mSv, 143 inelastic scatter iron gamma ray counts (at ∼847 keV) would ideally be registered at the germanium detectors for a 1 cm3 cube-shaped liver voxel with an iron concentration of 1000 ppm. According to the simulation model, an image of iron distribution in the liver can be constructed with a 1 cm resolution at the level of 1000 ppm iron. Collecting such an image would yield an estimated whole body dose of 0.82 mSv. The mathematical introduction of image uncertainty resulting from source spot diameter and detector timing resolution more closely approximates the result of real world application. CONCLUSIONS: APNEI of certain elements in vivo appears feasible given several timing, sensitivity, and resolution caveats. However, further study is required to determine what the detection limit of iron would be and what image resolution would be in an experimental setup as the present model contains idealized assumptions which overestimate the signal attributable to iron inelastic scatter gamma rays.


Subject(s)
Molecular Imaging/methods , Neutrons , Feasibility Studies , Humans , Liver/diagnostic imaging , Liver/metabolism , Monte Carlo Method
SELECTION OF CITATIONS
SEARCH DETAIL
...