Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 881: 163407, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37044331

ABSTRACT

The safe reuse of reclaimed water for agricultural irrigation has been considered as an alternative, feasible and sustainable option to address water scarcity. This work aims to validate the capability of the solar water photochemical process based on the synergistic effect between peroxymonosulfate (PMS) and natural solar radiation for actual urban wastewater (UWW) purification at a pilot plant scale using a solar Compound Parabolic Collector photo-reactor. The PMS/Solar process performance was assessed by monitoring simultaneously the inactivation of naturally occurring bacteria (Escherichia coli, Total coliforms, Enterococcus spp. and Pseudomonas spp.) as a potential tertiary treatment to fit the minimum bacterial requirements for UWW purification but also additional challenges have been in deep analysed simultaneously. In this regard, a global analysis including the degradation of three Contaminants of Emerging Concern (CECs) (Diclofenac-DCF, Sulfamethoxazole-SMX and Trimethoprim-TMP), the removal of antibiotic resistant elements, the residual toxicity and the treatment cost has been analysed. Different PMS concentrations (0-1 mM) were tested and an enhancement in the process performance was obtained with increasing oxidant load, obtaining the best results with 1 mM of PMS, at which detection limit (DL) of 2 CFU/mL was reached for all microbial targets after 15 min (1.1 kJ/L of accumulated solar UV-A radiation (QUV)) and 80 % of CECs removal was reached after 27 min (2.0 kJ/L of QUV) of solar treatment time. Inactivation of naturally occurring antibiotic resistant bacteria (ARB) and removal of 16S rRNA and selected antibiotic resistance genes (ARGs) (i.e., intI1, sul1, qnrS, blaTEM, blaCTX-M32, tetM) were also investigated. ARB was successfully inactivated to values below the DL, but the process was not able to completely remove ARGs. A total reduction of intI1 (30 %), 16S rRNA (19 %), sul1 (14 %), blaCTX-M32 (12 %), qnrS (10 %), blaTEM (8 %), and tetM (7 %), was obtained after 120 min (11.5 kJ/L of QUV). An absence of an eco and phytotoxic effect of treated samples was observed towards Aliivibrio fischeri and three seeds, respectively. Finally, an estimated treatment cost of 0.96 €/m3 for the simultaneous UWW disinfection and decontamination demonstrates the promising capability of this solar treatment for UWW reclamation and reuse in agriculture, especially in areas with a high solar radiation incidence.


Subject(s)
Angiotensin Receptor Antagonists , Water Purification , RNA, Ribosomal, 16S/genetics , Angiotensin Receptor Antagonists/metabolism , Angiotensin Receptor Antagonists/pharmacology , Hydrogen Peroxide/chemistry , Wastewater , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Bacteria/genetics , Sulfamethoxazole/metabolism , Water Purification/methods , Anti-Bacterial Agents/pharmacology
2.
J Hazard Mater ; 436: 129134, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35580500

ABSTRACT

The effect of different times of Fe:Ethylenediamine-N, N'-disuccinic acid (EDDS) dosing and H2O2 as well as different Fe:EDDS concentrations in the sequential treatment sunlight/H2O2 followed by sunlight/H2O2/Fe:EDDS at circumneutral pH was investigated for the first time focusing both in contaminants of emerging concern (CECs) and bacteria removal in urban wastewater treatment plant effluents. Process efficiency was evaluated in terms of (i) degradation of five CECs (namely caffeine, carbamazepine, diclofenac, sulfamethoxazole and trimethoprim) at the initial concentration of 100 µgL-1 each and (ii) bacteria inactivation (Escherichia coli (E. coli) and Salmonella spp). The effect of H2O2, Fe and EDDS concentration and Fe:EDDS dosing time was evaluated. 60% removal of the sum of total CECs and pathogens inactivation below the detection limit (DL) were observed by the sequential treatment with Fe:EDDS additions at 60 min and 45 min in simulated urban wastewater effluent. Sequential treatment was validated in actual urban wastewater effluent, being able to remove 60% of the target CECs and inactivate bacteria below the DL. Increasing EDDS concentration negatively affected Salmonella spp inactivation. Sequential treatment based on 120 min of sunlight/H2O2 (50 mg L-1) and subsequent SPF with Fe:EDDS (0.1:0.1 mM) was chosen as best operation conditions for full scale treatment in urban wastewater treatment plants.


Subject(s)
Wastewater , Water Pollutants, Chemical , Disinfection , Escherichia coli , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Sunlight , Wastewater/chemistry , Water Pollutants, Chemical/analysis
3.
Molecules ; 26(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443481

ABSTRACT

This study explores the capability of Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) for the simultaneous disinfection and decontamination of urban wastewater. Sulfate and hydroxyl radicals in solution were generated activating peroxymonosulfate (PMS) under UV-C irradiation at pilot plant scale. The efficiency of the process was assessed toward the removal of three CECs (Trimethoprim (TMP), Sulfamethoxazole (SMX), and Diclofenac (DCF)) and three bacteria (Escherichia coli, Enterococcus spp., and Pseudomonas spp.) in actual urban wastewater (UWW), obtaining the optimal value of PMS at 0.5 mmol/L. Under such experimental conditions, bacterial concentration ≤ 10 CFU/100 mL was reached after 15 min of UV-C treatment (0.03 kJ/L of accumulative UV-C radiation) for natural occurring bacteria, no bacterial regrowth was observed after 24 and 48 h, and 80% removal of total CECs was achieved after 12 min (0.03 kJ/L), with a release of sulfate ions far from the limit established in wastewater discharge. Moreover, the inactivation of Ampicillin (AMP), Ciprofloxacin (CPX), and Trimethoprim (TMP) antibiotic-resistant bacteria (ARB) and reduction of target genes (ARGs) were successfully achieved. Finally, a harmful effect toward the receiving aquatic environment was not observed according to Aliivibrio fischeri toxicity tests, while a slightly toxic effect toward plant growth (phytotoxicity tests) was detected. As a conclusion, a cost analysis demonstrated that the process could be feasible and a promising alternative to successfully address wastewater reuse challenges.


Subject(s)
Peroxides/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Purification/methods , Aliivibrio fischeri/drug effects , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/genetics , Oxidation-Reduction , Plants/drug effects , Sulfates/chemistry , Ultraviolet Rays , Wastewater/analysis , Wastewater/microbiology , Wastewater/toxicity , Water Pollutants, Chemical/radiation effects
4.
Water Res ; 185: 116226, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32738603

ABSTRACT

Water contamination with the enteroprotozoan parasite Cryptosporidium is a current challenge worldwide. Solar water disinfection (SODIS) has been proved as a potential alternative for its inactivation, especially at household level in low-income environments. This work presents the first comprehensive kinetic model for the inactivation of Cryptosporidium parvum oocysts by sunlight that, based on the mechanism of the process, is able to describe not only the individual thermal and spectral actions but also their synergy. Model predictions are capable of estimating the required solar exposure to achieve the desired level of disinfection under variable solar spectral irradiance and environmental temperature conditions for different locations worldwide. The thermal contribution can be successfully described by a modified Arrhenius equation while photoinactivation is based on a series-event mechanistic model. The wavelength-dependent spectral effect is modeled by means of the estimation of the C. parvum extinction coefficients and the determination of the quantum yield of the inactivation process. Model predictions show a 3.7% error with respect to experimental results carried out under a wide range of temperature (30 to 45 °C) and UV irradiance (0 to 50 W·m-2). Furthermore, the model was validated in three scenarios in which the spectral distribution radiation was modified using different plastic materials common in SODIS devices, ensuring accurate forecasting of inactivation rates for real conditions.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Water Purification , Animals , Disinfection , Sunlight , Water
5.
Molecules ; 24(11)2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31212699

ABSTRACT

BACKGROUND: Solar water disinfection (SODIS) is an appropriate technology for household treatment of drinking water in low-to-middle-income communities, as it is effective, low cost and easy to use. Nevertheless, uptake is low due partially to the burden of using small volume polyethylene terephthalate bottles (1.5-2 L). A major challenge is to develop a low-cost transparent container for disinfecting larger volumes of water. (2) Methods: This study examines the capability of transparent polypropylene (PP) buckets of 5 L- and 20 L- volume as SODIS containers using three waterborne pathogen indicators: Escherichia coli, MS2-phage and Cryptosporidium parvum. (3) Results: Similar inactivation kinetics were observed under natural sunlight for the inactivation of all three organisms in well water using 5 L- and 20 L-buckets compared to 1.5 L-polyethylene-terephthalate (PET) bottles. The PP materials were exposed to natural and accelerated solar ageing (ISO-16474). UV transmission of the 20 L-buckets remained stable and with physical integrity even after the longest ageing periods (9 months or 900 h of natural or artificial solar UV exposure, respectively). The 5 L-buckets were physically degraded and lost significant UV-transmission, due to the thinner wall compared to the 20 L-bucket. (4) Conclusion: This work demonstrates that the 20 L SODIS bucket technology produces excellent bacterial, viral and protozoan inactivation and is obtained using a simple transparent polypropylene bucket fabricated locally at very low cost ($2.90 USD per unit). The increased bucket volume of 20 L allows for a ten-fold increase in treatment batch volume and can thus more easily provide for the drinking water requirements of most households. The use of buckets in households across low to middle income countries is an already accepted practice.


Subject(s)
Disinfection/methods , Polypropylenes , Sunlight , Water Microbiology , Drinking Water/microbiology , Drinking Water/standards , Humans , Temperature , Thermal Conductivity
6.
Ultrason Sonochem ; 48: 118-126, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30080534

ABSTRACT

Water reuse is currently considered an innovative way to addressing water shortage that can provide significant economic, social and environmental benefits, particularly -but not exclusively- in water deficient areas. The potential transmission of infectious diseases is the most common concern in relation to water reclamation. Cryptosporidium is an important genus of protozoan enteropathogens that infect a wide range of vertebrate hosts, including humans. The infective form (oocyst) is highly resistant to the environmental conditions and disinfection treatments. Consequently, Cryptosporidium is the most common etiological agent identified in waterborne outbreaks attributed to parasitic protozoa worldwide. The present study evaluates the efficacy of ultrasound disinfection, at three power levels (60, 80 and 100 W), pulsed at 50% or in continuous mode, for inactivating the waterborne protozoan parasite Cryptosporidium parvum in simulated and real effluents from municipal wastewater treatment plants (MWTPs). Overall interpretation of the results shows that the application of ultrasound irradiation at 80 W power in continuous mode for an exposure time of 10 min drastically reduced the viability of C. parvum. Thus, oocyst viabilities of 4.16 ±â€¯1.93%; 1.29 ±â€¯0.86%; 3.16 ±â€¯0.69%; and 3.15 ±â€¯0.87% were obtained in distilled water, simulated, real and filtered MWTP effluents, respectively (vs 98.57 ±â€¯0.01%, initial oocyst viability), as determined using inclusion/exclusion of the fluorogenic vital dye propidium iodide, an indicator of the integrity of the oocyst wall. Independently of the mode used (pulsed/continuous) and at 80 W power, higher level of oocyst inactivation was detected in MWTP effluents than in distilled water used as a control solution, may be due to the differences in the chemical composition of the samples. Comparison of the results obtained in both modes showed that use of the continuous mode yielded significantly lower oocyst viability. However, when the Dose parameter was considered (energy per volume unit), no statistically significant differences in oocyst viability were observed in relation to the type of mode used. The results demonstrate that ultrasound technology represents a promising alternative to the disinfection methods (ultraviolet irradiation and chlorine products) currently used in water reclamation as it drastically reduces the survival of Cryptosporidium oocysts, without changing the chemical composition of the water or producing toxic by-products.


Subject(s)
Cryptosporidium parvum/radiation effects , Oocysts/cytology , Ultrasonic Waves , Wastewater/parasitology , Water Purification/methods , Cities
7.
J Photochem Photobiol B ; 163: 92-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27543761

ABSTRACT

Cryptosporidium is a genus of enteric protozoan parasites of medical and veterinary importance, whose oocysts have been reported to occur in different types of water worldwide, offering a great resistant to the water treatment processes. Heterogeneous solar photocatalysis using titanium dioxide (TiO2) slurry was evaluated on inactivation of Cryptosporidium parvum oocysts in water. Suspensions of TiO2 (0, 63, 100 and 200mg/L) in distilled water (DW) or simulated municipal wastewater treatment plant (MWTP) effluent spiked with C. parvum oocysts were exposed to simulated solar radiation. The use of TiO2 slurry at concentrations of 100 and 200mg/L in DW yielded a high level of oocyst inactivation after 5h of exposure (4.16±2.35% and 15.03±4.54%, respectively, vs 99.33±0.58%, initial value), representing a good improvement relative to the results obtained in the samples exposed without TiO2 (51.06±9.35%). However, in the assays carried out using simulated MWTP effluent, addition of the photocatalyst did not offer better results. Examination of the samples under bright field and epifluorescence microscopy revealed the existence of aggregates comprising TiO2 particles and parasitic forms, which size increased as the concentration of catalyst and the exposure time increased, while the intensity of fluorescence of the oocyst walls decreased. After photocatalytic disinfection process, the recovery of TiO2 slurry by sedimentation provided a substantial reduction in the parasitic load in treated water samples (57.81±1.10% and 82.10±2.64% for 200mg/L of TiO2 in DW and in simulated MWTP effluent, respectively). Although further studies are need to optimize TiO2 photocatalytic disinfection against Cryptosporidium, the results obtained in the present study show the effectiveness of solar photocatalysis using TiO2 slurry in the inactivation of C. parvum oocysts in distilled water.


Subject(s)
Cryptosporidium parvum/physiology , Microbial Viability/drug effects , Microbial Viability/radiation effects , Sunlight , Titanium/pharmacology , Water Microbiology , Water Purification/methods , Catalysis , Cryptosporidium parvum/cytology , Cryptosporidium parvum/drug effects , Cryptosporidium parvum/radiation effects , Oocysts/drug effects , Oocysts/radiation effects , Wastewater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...