Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 24(1): 407, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627637

ABSTRACT

BACKGROUND: Since the emergence of SARS-CoV-2 (COVID-19), there have been multiple waves of infection and multiple rounds of vaccination rollouts. Both prior infection and vaccination can prevent future infection and reduce severity of outcomes, combining to form hybrid immunity against COVID-19 at the individual and population level. Here, we explore how different combinations of hybrid immunity affect the size and severity of near-future Omicron waves. METHODS: To investigate the role of hybrid immunity, we use an agent-based model of COVID-19 transmission with waning immunity to simulate outbreaks in populations with varied past attack rates and past vaccine coverages, basing the demographics and past histories on the World Health Organization Western Pacific Region. RESULTS: We find that if the past infection immunity is high but vaccination levels are low, then the secondary outbreak with the same variant can occur within a few months after the first outbreak; meanwhile, high vaccination levels can suppress near-term outbreaks and delay the second wave. Additionally, hybrid immunity has limited impact on future COVID-19 waves with immune-escape variants. CONCLUSIONS: Enhanced understanding of the interplay between infection and vaccine exposure can aid anticipation of future epidemic activity due to current and emergent variants, including the likely impact of responsive vaccine interventions.


Subject(s)
COVID-19 , Epidemics , Vaccines , Humans , COVID-19/epidemiology , SARS-CoV-2 , Vaccination , Adaptive Immunity
2.
BMC Infect Dis ; 23(1): 713, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872480

ABSTRACT

Early case detection is critical to preventing onward transmission of COVID-19 by enabling prompt isolation of index infections, and identification and quarantining of contacts. Timeliness and completeness of ascertainment depend on the surveillance strategy employed. This paper presents modelling used to inform workplace testing strategies for the Australian government in early 2021. We use rapid prototype modelling to quickly investigate the effectiveness of testing strategies to aid decision making. Models are developed with a focus on providing relevant results to policy makers, and these models are continually updated and improved as new questions are posed. Developed to support the implementation of testing strategies in high risk workplace settings in Australia, our modelling explores the effects of test frequency and sensitivity on outbreak detection. We start with an exponential growth model, which demonstrates how outbreak detection changes depending on growth rate, test frequency and sensitivity. From the exponential model, we learn that low sensitivity tests can produce high probabilities of detection when testing occurs frequently. We then develop a more complex Agent Based Model, which was used to test the robustness of the results from the exponential model, and extend it to include intermittent workplace scheduling. These models help our fundamental understanding of disease detectability through routine surveillance in workplaces and evaluate the impact of testing strategies and workplace characteristics on the effectiveness of surveillance. This analysis highlights the risks of particular work patterns while also identifying key testing strategies to best improve outbreak detection in high risk workplaces.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Australia/epidemiology , Disease Outbreaks/prevention & control , Workplace
3.
Infect Dis Model ; 8(2): 539-550, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37288288

ABSTRACT

Vaccination is an important epidemic intervention strategy. However, it is generally unclear how the outcomes of different vaccine strategies change depending on population characteristics, vaccine mechanisms and allocation objective. In this paper we develop a conceptual mathematical model to simulate strategies for pre-epidemic vaccination. We extend the SEIR model to incorporate a range of vaccine mechanisms and disease characteristics. We then compare the outcomes of optimal and suboptimal vaccination strategies for three public health objectives (total infections, total symptomatic infections and total deaths) using numerical optimisation. Our comparison shows that the difference in outcomes between vaccinating optimally and suboptimally depends on vaccine mechanisms, disease characteristics, and objective considered. Our modelling finds vaccines that impact transmission produce better outcomes as transmission is reduced for all strategies. For vaccines that impact the likelihood of symptomatic disease or dying due to infection, the improvement in outcome as we decrease these variables is dependent on the strategy implemented. Through a principled model-based process, this work highlights the importance of designing effective vaccine allocation strategies. We conclude that efficient allocation of resources can be just as crucial to the success of a vaccination strategy as the vaccine effectiveness and/or amount of vaccines available.

SELECTION OF CITATIONS
SEARCH DETAIL
...