Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Genet ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38719348

ABSTRACT

BACKGROUND: Exploring the expression of X linked disorders like haemophilia A (HA) in females involves understanding the balance achieved through X chromosome inactivation (XCI). Skewed XCI (SXCI) may be involved in symptomatic HA carriers. We aimed to develop an approach for dissecting the specific cause of SXCI and verify its value in HA. METHODS: A family involving three females (two symptomatic with severe/moderate HA: I.2, the mother, and II.1, the daughter; one asymptomatic: II.2) and two related affected males (I.1, the father and I.3, the maternal uncle) was studied. The genetic analysis included F8 mutational screening, multiplex ligation-dependent probe amplification, SNP microarray, whole exome sequencing (WES) and Sanger sequencing. XCI patterns were assessed in ectoderm/endoderm and mesoderm-derived tissues using AR-based and RP2-based systems. RESULTS: The comprehensive family analysis identifies I.2 female patient as a heterozygous carrier of F8:p.(Ser1414Ter) excluding copy number variations. A consistent XCI pattern of 99.5% across various tissues was observed. A comprehensive filtering algorithm for WES data was designed, developed and applied to I.2. A Gly58Arg missense variant in VMA21 was revealed as the cause for SXCI.Each step of the variant filtering system takes advantage of publicly available genomic databases, non-SXCI controls and case-specific molecular data, and aligns with established concepts in the theoretical background of SXCI. CONCLUSION: This study acts as a proof of concept for our genomic filtering algorithm's clinical utility in analysing X linked disorders. Our findings clarify the molecular aspects of SXCI and improve genetic diagnostics and counselling for families with X linked diseases like HA.

2.
Front Pediatr ; 11: 1210158, 2023.
Article in English | MEDLINE | ID: mdl-37425258

ABSTRACT

Introduction: Hemolytic uremic syndrome (HUS) is a condition that results in acute kidney failure mainly in children, which is caused by Shiga toxin-producing Escherichia coli and inflammatory response. Although anti-inflammatory mechanisms are triggered, studies on the implication in HUS are scarce. Interleukin-10 (IL-10) regulates inflammation in vivo, and the interindividual differences in its expression are related to genetic variants. Notably, the single nucleotide polymorphism (SNP) rs1800896 -1082 (A/G), located in the IL-10 promoter, regulates cytokine expression. Methods: Plasma and peripheral blood mononuclear cells (PBMC) were collected from healthy children and HUS patients exhibiting hemolytic anemia, thrombocytopenia, and kidney damage. Monocytes identified as CD14+ cells were analyzed within PBMC by flow cytometry. IL-10 levels were quantified by ELISA, and SNP -1082 (A/G) was analyzed by allele-specific PCR. Results: Circulating IL-10 levels were increased in HUS patients, but PBMC from these patients exhibited a lower capacity to secrete this cytokine compared with those from healthy children. Interestingly, there was a negative association between the circulating levels of IL-10 and inflammatory cytokine IL-8. We observed that circulating IL-10 levels were threefold higher in HUS patients with -1082G allele in comparison to AA genotype. Moreover, there was relative enrichment of GG/AG genotypes in HUS patients with severe kidney failure. Discussion: Our results suggest a possible contribution of SNP -1082 (A/G) to the severity of kidney failure in HUS patients that should be further evaluated in a larger cohort.

3.
Hum Mutat ; 41(4): 825-836, 2020 04.
Article in English | MEDLINE | ID: mdl-31898853

ABSTRACT

Hemophilia A (HA) provides excellent models to analyze genotype-phenotype relationships and mutational mechanisms. NhF8ld's breakpoints were characterized using case-specific DNA-tags, direct- or inverse-polymerase chain reaction amplification, and Sanger sequencing. DNA-break's stimulators (n = 46), interspersed repeats, non-B-DNA, and secondary structures were analyzed around breakpoints versus null hypotheses (E-values) based on computer simulations and base-frequency probabilities. Nine of 18 (50%) severe-HA patients with nhF8lds developed inhibitors, 1/8 affecting one exon and 8/10 (80%) affecting multi-exons. NhF8lds range: 2-165 kb. Five (45%) nhF8lds involve F8-extragenic regions including three affecting vicinal genes (SMIM9 and BRCC3) but none shows an extra-phenotype not related to severe-HA. The contingency analysis of recombinogenic motifs at nhF8ld breakpoints indicated a significant involvement of several DNA-break stimulator elements. Most nhF8ld's breakpoint junctions showed microhomologies (1-7 bp). Three (27%) nhF8lds show complexities at the breakpoints: an 8-bp inverted-insertion, and the remnant two, inverted- and direct-insertions (46-68 bp) supporting replicative models microhomology-mediated break-induced replication/Fork Stalling and Template Switching. The remnant eight (73%) nhF8lds may support nonhomologous end joining/microhomology-mediated end joining models. Our study suggests the involvement of the retroposition machinery (e.g., Jurka-targets, Alu-elements, long interspersed nuclear elements, long terminal repeats), microhomologies, and secondary structures at breakpoints playing significant roles in the origin of the upmost severe phenotype in HA.


Subject(s)
Factor VIII/genetics , Genetic Variation , Hemophilia A/genetics , Chromosome Breakpoints , Computational Biology/methods , Genetic Association Studies , Genetic Loci , Genetic Predisposition to Disease , Hemophilia A/diagnosis , Humans , Male , Mutation , Nucleic Acid Conformation , Nucleotide Motifs , Phenotype , Recombination, Genetic , Severity of Illness Index
4.
Eur J Hum Genet ; 27(4): 603-611, 2019 04.
Article in English | MEDLINE | ID: mdl-30626931

ABSTRACT

Among other applications of long-distance haplotype phasing in clinical genetics, determination of linked DNA markers as surrogate for problematic structural variants (e.g., repeat-mediated rearrangements) is essential to perform diagnosis from low-quality DNA samples. We describe a next-of-kin-independent (physical) phasing approach based on inverse-PCR (iPCR) paired-end amplification (PI). This method enables typing the multialleles of the short tandem repeat (STR) F8Int21[CA]n at the F8-intron 21, as a surrogate DNA marker for the F8-intron 22 inversion (Inv22), the hemophilia A-causative hotspot, within the transmitted haplotype in informative carriers. We provide proof-of-concept by blindly validating the PI approach in 15 carrier mother/affected-son duos. Every F8Int21[CA]n STR allele determined in phase with the Inv22 allele in the female carriers from the informative duos was confirmed in the hemizygous proband (P = 0.00003). A second surrogate STR locus at the F8-IVS22 was obtained by the PI approach improving severe-HA preimplantation genetic diagnosis by augmenting heterozygosity in Inv22 carriers bypassing the requirement for family linkage analysis. The ability of the PI-assay to combine other marker pairs was demonstrated by haplotyping a SNV (F8:c.6118T > C) with a >28kb-distant F8-IVS22 STR. The PI approach has proven flexibility to target different marker pairs and has potential for multiplex characterization of iPCR products by massively parallel sequencing.


Subject(s)
Hemophilia A/genetics , Microsatellite Repeats/genetics , Polymerase Chain Reaction/methods , Preimplantation Diagnosis , Alleles , Female , Genetic Markers/genetics , Genotype , Haplotypes/genetics , Hemophilia A/diagnosis , Hemophilia A/physiopathology , Humans , Introns , Male , Pregnancy
6.
Thromb Haemost ; 109(1): 24-33, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23093250

ABSTRACT

In haemophilia B (HB) (factor IX [FIX] deficiency), F9 genotype largely determines clinical phenotype. Aimed to characterise Argentinian families with HB, this study presents F9 genotype frequencies and their specific FIX inhibitor risk and 10 novel F9 mutations. Ninety-one DNA samples from HB patients and relatives were subjected to a new scheme: a primary screen for large deletions, a secondary screen for point mutations using conformation sensitive gel electrophoresis, DNA-sequencing and bioinformatic analysis. Our unbiased HB population (N=52) (77% with severe, 11.5% moderate and 11.5% mild HB) showed 32 missense (61.5%), including three novel mutations predicting specific structural/functional defects in silico , seven nonsense (13.5%) (one novel), five large deletions, four splice including three novel mutations affecting predicted splicing scores, three indels (two novel) and one Leiden mutation. Our comprehensive HB population included five patients with long-lasting FIX inhibitors: three nonsense (p.E35* (novel), p.R75*, p.W240*) and two entire- F9 deletions. Another patient with an indel (p.A26Rfs*14) developed transient inhibitors. A case-control analysis, based on our global prevalence of 3.05% for developing inhibitors in HB revealed that missense mutations were associated with a low risk odds ratio (OR) of 0.05 and a prevalence of 0.39%, whereas nonsense and entire- F9 deletions had significantly higher risks (OR 11.0 and 32.7) and prevalence (14.3% and 44.5%, respectively). Our cost-effective practical approach enabled identification of the causative mutation in all 55 Argentine families with HB, analysis of the molecular pathology of novel F9 defects and determination of mutation-associated FIX inhibitor risks.


Subject(s)
Factor IX/genetics , Hemophilia B/genetics , Hemostasis/genetics , Mutation , Argentina/epidemiology , Autoantibodies/blood , Biomarkers/blood , Case-Control Studies , Codon, Nonsense , Computational Biology , DNA Mutational Analysis/methods , Factor IX/chemistry , Factor IX/immunology , Female , Gene Frequency , Genetic Predisposition to Disease , Hemophilia B/blood , Hemophilia B/diagnosis , Hemophilia B/epidemiology , Humans , INDEL Mutation , Male , Mutation, Missense , Odds Ratio , Pedigree , Phenotype , Point Mutation , Prevalence , Protein Conformation , Risk Factors , Sequence Deletion , Severity of Illness Index , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...