Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 7(4)2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31775282

ABSTRACT

The present study aims to evaluate the impact of e-cig second-hand aerosol on indoor air quality in terms of ultrafine particles (UFPs) and potential inhalation exposure levels of passive bystanders. E-cig second-hand aerosol characteristics in terms of UFPs number concentration and size distribution exhaled by two volunteers vaping 15 different e-liquids inside a 49 m3 room and comparison with tobacco smoke are discussed. High temporal resolution measurements were performed under natural ventilation conditions to simulate a realistic exposure scenario. Results showed a systematic increase in UFPs number concentration (part cm-3) related to a 20-min vaping session (from 6.56 × 103 to 4.01 × 104 part cm-3), although this was one up to two order of magnitude lower than that produced by one tobacco cigarette consumption (from 1.12 × 105 to 1.46 × 105 part cm-3). E-cig second-hand aerosol size distribution exhibits a bimodal behavior with modes at 10.8 and 29.4 nm in contrast with the unimodal typical size distribution of tobacco smoke with peak mode at 100 nm. In the size range 6-26 nm, particles concentration in e-cig second-hand aerosol were from 2- (Dp = 25.5 nm) to 3800-fold (Dp = 9.31 nm) higher than in tobacco smoke highlighting that particles exhaled by users and potentially inhaled by bystanders are nano-sized with high penetration capacity into human airways.

2.
J Sep Sci ; 40(5): 1049-1056, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28012240

ABSTRACT

A liquid chromatography with tandem mass spectrometry method for the simultaneous quantification of nicotine and seven minor tobacco alkaloids in both refill liquids for electronic cigarettes and their generated aerosol was developed and validated. The limit of detection and limit of quantification values were 0.3-20.0 and 1.0-31.8 ng/mL, respectively. Within-laboratory reproducibility was 8.2-14.2% at limit of quantification values and 4.8-12.7% at other concentration levels. Interday recovery was 75.8-116.4%. The method was applied to evaluate the compliance of commercial liquids (n = 95) with their labels and to assess levels of minor alkaloids. Levels of nicotine and its corresponding compounds were also evaluated in generated aerosol. About 47% of samples showed differences above ±10 % of the stated nicotine concentration. About 78% of the "zero nicotine" liquids showed traces in the range of 1.3 ± 0.1-254.0 ± 14.6 µg/mL. Nicotine-N'-oxides, myosmine, and anatabine were the most common minor alkaloids in liquids containing nicotine. Nicotine and N'-oxides were detected in all air samples when aerosol was generated from liquids containing nicotine. Nicotine average emissions from electronic cigarette (2.7 ± 0.9 µg/m3 ) were significantly lower (p < 0.01, t-test) with respect to conventional cigarette (30.2 ± 1.5 µg/m3 ).


Subject(s)
Alkaloids/analysis , Chromatography, Liquid , Electronic Nicotine Delivery Systems , Nicotine/analysis , Tandem Mass Spectrometry , Aerosols/analysis , Reproducibility of Results , Nicotiana/chemistry
3.
Nicotine Tob Res ; 17(3): 271-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25257980

ABSTRACT

INTRODUCTION: To date, several concerns have been raised on the purity of ingredients employed in the manufacturing processes of refill fluids and cartridges, the device functionality, and the quality control of electronic cigarettes. This article reviews analytical methods so far described for the analysis of liquids to detect their chemical components and to investigate the presence of toxicants and carcinogens that can potentially occur as impurities of ingredients or as a consequence of their degradation. RESULTS AND DISCUSSION: Based on the scientific literature, high-performance liquid chromatography with diode-array detection (HPLC/DAD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) are most appropriate for determining nicotine and related compounds in fluids and cartridges, whereas LC-MS/MS has been successfully used to determine nitrosamines. Content analyses of glycols have been performed using gas chromatography equipped with flame ionization detector or gas chromatography/mass spectrometry (GC/MS), whereas carbonyl and other volatile organic compounds determinations have been performed by HPLC/DAD and GC/MS, respectively. Content analyses of heavy metals have been performed by inductively coupled plasma optical emission spectroscopy or inductively coupled plasma mass spectrometry. Since new potentially toxic substances may be created during heating, it is also necessary to investigate the chemical composition of generated aerosol. In this case, similar methods applied for tobacco smoke can be adopted. CONCLUSIONS: A broad range of analytical techniques are available for the detection of constituents and toxicants in e-liquids and cartridges. Analyses of liquids have been performed with pharmacopeia procedures and methods (International Organization for Standardization, Environmental Protection Agency, and American Public Health Association) developed for other matrices but applicable to e-liquids. Because new potentially harmful substances may be produced during heating process, analyses of aerosol are needed to correlate its composition to the chemical components of liquids.


Subject(s)
Electronic Nicotine Delivery Systems/standards , Gas Chromatography-Mass Spectrometry/methods , Nicotine/analysis , Nicotine/chemistry , Tandem Mass Spectrometry/methods , Carcinogens/analysis , Carcinogens/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Chromatography, Liquid/methods , Chromatography, Liquid/standards , Gas Chromatography-Mass Spectrometry/standards , Nitrosamines/analysis , Nitrosamines/chemistry , Smoke/analysis , Tandem Mass Spectrometry/standards , Nicotiana/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...