Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur J Neurosci ; 48(3): 1896-1905, 2018 08.
Article in English | MEDLINE | ID: mdl-30019535

ABSTRACT

Nuclei within the basal ganglia-such as the globus pallidus external segment, subthalamic nucleus, and substantia nigra pars reticulata-have been shown to exhibit synchronous bursting activity entrained to excessive cortical beta oscillations following dopamine depletion. Zolpidem binds to GABAA receptors with selectivity for those expressing the α1 subunit, potentiating inhibitory postsynaptic currents and increasing the time decay of channel opening. Interestingly, zolpidem-sensitive nuclei within the basal ganglia circuitry are also those that have been shown to exhibit hyperexcitation in a dopamine-depleted state. We hypothesized that a drug with selectivity for these nuclei may improve motor impairments associated with Parkinson's disease. In order to determine the threshold dose at which zolpidem might encumber motor behavior, a dose-response experiment was performed in intact rats using rotarod. Next, we tested whether subthreshold doses (0.1, 0.25, 0.5 mg/kg; i.p.) of zolpidem improved volitional motor behavior/coordination using the rotarod balance beam and cylinder/paw preference tests in unilaterally 6-hydroxydopamine-lesioned rats. It was found that 0.1 mg/kg zolpidem significantly improved rotarod performance and significantly reduced forelimb use asymmetry compared to undrugged post-lesion conditions. Here, we present the first translational evidence for a role of zolpidem-sensitive GABAA receptors in the treatment of PD motor symptoms. Our data show that zolpidem improves both motor coordination and volitional forelimb use in the unilateral 6-hydroxydopamine lesion model of PD, and thus suggest that zolpidem-sensitive GABAA receptors may represent a novel therapeutic target for the treatment of motor symptoms of Parkinson's disease.


Subject(s)
GABA-A Receptor Agonists/administration & dosage , Motor Activity/drug effects , Parkinsonian Disorders/physiopathology , Zolpidem/administration & dosage , Animals , Disease Models, Animal , Male , Oxidopamine/administration & dosage , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/drug therapy , Rats, Sprague-Dawley , Rotarod Performance Test
2.
J Physiol ; 593(16): 3727-38, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25952461

ABSTRACT

KEY POINTS: Neural synchrony between the subthalamic nucleus (STN) and cortex is critical for proper information processing in basal ganglia circuits. Using in vivo extracellular recordings in urethane-anaesthetized mice, we demonstrate that single units and local field potentials from the STN exhibit oscillatory entrainment to low-frequency (0.5-4 Hz) rhythms when the cortex is in a synchronized state. Here we report novel findings in the R6/2 transgenic mouse model of Huntington's disease (HD) by demonstrating that STN activity is reduced and less phase-locked to cortical low-frequency oscillations. The spectral power of low-frequency oscillations in ECoG recordings of R6/2 mice is diminished while the spectral power of higher frequencies is augmented and such altered cortical patterning could lead to decreased synchrony in corticosubthalamic circuits. Our data establish that cortical entrainment of STN neural activity is disrupted in R6/2 mice and may be one of the mechanisms contributing to disordered motor control in HD. ABSTRACT: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder in which impairments in the processing of information between the cortex and basal ganglia are fundamental to the onset and progression of the HD phenotype. The corticosubthalamic hyperdirect pathway plays a pivotal role in motor selection and blockade of neuronal activity in the subthalamic nucleus (STN) results in a hyperkinetic movement syndrome, similar to the HD phenotype. The aim of the present study was to examine the relationship between neuronal activity in the STN and cortex in an animal model of HD. We performed in vivo extracellular recordings in the STN to measure single-unit activity and local field potentials in the R6/2 transgenic mouse model of HD. These recordings were obtained during epochs of simultaneously acquired electrocorticogram (ECoG) in discrete brain states representative of global cortical network synchronization or desynchronization. Cortically patterned STN neuronal activity was less phase-locked in R6/2 mice, which is likely to result in less efficient coding of cortical inputs by the basal ganglia. In R6/2 mice, the power of the ECoG in lower frequencies (0.5-4 Hz) was diminished while the power expressed in higher frequencies (13-100 Hz) was increased. In addition, the spontaneous activity of STN neurons in R6/2 mice was reduced and neurons exhibited a more irregular firing pattern. Glutamatergic STN neurons provide the major excitatory drive to the output nuclei of the basal ganglia and altered discharge patterns could lead to aberrant basal ganglia output and disordered motor control in HD.


Subject(s)
Cerebral Cortex/physiology , Huntington Disease/physiopathology , Subthalamic Nucleus/physiology , Animals , Disease Models, Animal , Electrocorticography , Male , Mice, Transgenic , Neurons/physiology
3.
Neurobiol Dis ; 78: 88-99, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25772440

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that results in motor, cognitive and psychiatric abnormalities. Dysfunction in neuronal processing between the cortex and the basal ganglia is fundamental to the onset and progression of the HD phenotype. The corticosubthalamic hyperdirect pathway plays a crucial role in motor selection and blockade of neuronal activity in the subthalamic nucleus (STN) results in hyperkinetic movement abnormalities, similar to the motor symptoms associated with HD. The aim of the present study was to examine whether changes in the fidelity of information transmission between the cortex and the STN emerge as a function of phenotypic severity in the YAC128 mouse model of HD. We obtained in vivo extracellular recordings in the STN and concomitant electrocorticogram (ECoG) recordings during discrete brain states that reflected global cortical network synchronization or desynchronization. At early ages in YAC128 mice, both the cortex and the STN exhibited patterns of hyperexcitability. As symptom severity progressed, cortical entrainment of STN activity was disrupted and there was an increase in the proportion of non-oscillating, tonically firing STN neurons that were less phase-locked to cortical activity. Concomitant to the dissipation of STN entrainment, there was a reduction in the evoked response of STN neurons to focal cortical stimulation. The spontaneous discharge of STN neurons in YAC128 mice also decreased with age and symptom severity. These results indicate dysfunction in the flow of information within the corticosubthalamic circuit and demonstrate progressive age-related disconnection of the hyperdirect pathway in a transgenic mouse model of HD.


Subject(s)
Cerebral Cortex/physiopathology , Huntington Disease/physiopathology , Neurons/physiology , Subthalamic Nucleus/physiopathology , Age Factors , Animals , Cortical Synchronization , Disease Models, Animal , Male , Mice , Mice, Transgenic , Motor Activity , Neural Pathways/physiopathology , Rotarod Performance Test
4.
Exp Neurol ; 232(2): 119-25, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21864528

ABSTRACT

Huntington's disease (HD) is a genetic neurodegenerative disorder that is characterized by the progressive onset of cognitive, psychiatric, and motor symptoms. In parallel, the neuropathology of HD is characterized by progressive loss of projection neurons in cortex and striatum; striatal cholinergic interneurons are relatively spared. Nonetheless, there is evidence that striatal acetylcholine (ACh) function is altered in HD. The present study is the first to examine striatal ACh function in awake, behaving animals, using the R6/2 mouse model of HD, which is transgenic for exon 1 of the mutant huntingtin gene. Physiological levels of extracellular striatal ACh were monitored in R6/2 mice and wild type controls using in vivo microdialysis. Results indicate that spontaneous ACh release is reduced in R6/2 mice relative to controls. Intrastriatal application of the GABA(A) antagonist bicuculline methiodide (10.0 µM) significantly elevated ACh levels in both R6/2 mice and wild type controls, while overall ACh levels were reduced in the R6/2 mice compared to the wild type group. In contrast, systemic administration of the D(1) dopamine receptor partial agonist, SKF-38393 (10.0mg/kg, IP), elevated ACh levels in control animals, but not R6/2 mice. Taken together, the present results suggest that GABA-mediated inhibition of striatal ACh release is intact in R6/2 mice, further demonstrating that cholinergic interneurons are capable of increased ACh release, whereas D(1) receptor-dependent activation of excitatory inputs to striatal cholinergic interneurons is dysfunctional in R6/2 mice. Reduced levels of extracellular striatal ACh in HD may reflect abnormalities in the excitatory innervation of cholinergic interneurons, which may have implications ACh-dependent processes that are altered in HD, including corticostriatal plasticity.


Subject(s)
Acetylcholine/metabolism , Cholinergic Neurons/physiology , Corpus Striatum/physiopathology , Huntington Disease/physiopathology , Neural Inhibition/physiology , Synaptic Transmission/physiology , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Animals , Bicuculline/pharmacology , Cholinergic Neurons/pathology , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Dopamine/metabolism , Dopamine Agonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , GABA-A Receptor Antagonists/pharmacology , Humans , Huntingtin Protein , Huntington Disease/metabolism , Huntington Disease/pathology , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Interneurons/pathology , Interneurons/physiology , Mice , Mice, Transgenic , Motor Skills/physiology , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Nerve Tissue Proteins/genetics , Neural Inhibition/drug effects , Nuclear Proteins/genetics , Synaptic Transmission/drug effects
5.
Front Syst Neurosci ; 5: 61, 2011.
Article in English | MEDLINE | ID: mdl-21811446

ABSTRACT

Huntington's disease (HD) is characterized by numerous alterations within the corticostriatal circuitry. The striatum is innervated by a dense array of dopaminergic (DA) terminals and these DA synapses are critical to the proper execution of motor functions. As motor disturbances are prevalent in HD we examined DA neurotransmission in the striatum in transgenic (tg) murine models of HD. We used in vivo microdialysis to compare extracellular concentrations of striatal DA in both a fragment (R6/2) model, which displays a rapid and severe phenotype, and a full-length (YAC128) model that expresses a more progressive phenotype. Extracellular striatal DA concentrations were significantly reduced in R6/2 mice and decreased concomitantly with age-dependent increasing motor impairments on the rotarod task (7, 9, and 11 weeks). In a sample of 11-week-old R6/2 mice, we also measured tissue concentrations of striatal DA and found that total levels of DA were significantly depleted. However, the loss of total DA content (<50%) was insufficient to account for the full extent of DA depletion in the extracellular fluid (ECF; ∼75%). We also observed a significant reduction in extracellular DA concentrations in the striatum of 7-month-old YAC128 mice. In a separate set of experiments, we applied d-amphetamine (AMPH; 10 µm) locally into the striatum to stimulate the release of intracellular DA into the ECF. The AMPH-induced increase in extracellular DA levels was significantly blunted in 9-week-old R6/2 mice. There also was a decrease in AMPH-stimulated DA efflux in 7-month-old YAC128 mice in comparison to WT controls, although the effect was milder. In the same cohort of 7-month-old YAC128 mice we observed a significant reduction in the total locomotor activity in response to systemic AMPH (2 mg/kg). Our data demonstrate that extracellular DA release is attenuated in both a fragment and full-length tg mouse model of HD and support the concept of DA involvement in aspects of the syndrome.

6.
Front Syst Neurosci ; 5: 41, 2011.
Article in English | MEDLINE | ID: mdl-21713112

ABSTRACT

We have recently shown in vitro that striatal tyrosine hydroxylase-expressing interneurons identified in transgenic mice by expression of enhanced green fluorescent protein (TH-eGFP) display electrophysiological profiles that are distinct from those of other striatal interneurons. Furthermore, striatal TH-eGFP interneurons show marked diversity in their electrophysiological properties and have been divided into four distinct subtypes. One question that arises from these observations is whether striatal TH-eGFP interneurons are distributed randomly, or obey some sort of organizational plan as has been shown to be the case with other striatal interneurons. An understanding of the striatal TH-eGFP interneuronal patterning is a vital step in understanding the role of these neurons in striatal functioning. Therefore, in the present set of studies the location of electrophysiologically identified striatal TH-eGFP interneurons was mapped. In addition, the distribution of TH-eGFP interneurons with respect to the striatal striosome-matrix compartmental organization was determined using µ-opioid receptor (MOR) immunofluorescence or intrinsic TH-eGFP fluorescence to delineate striosome and matrix compartments. Overall, the distribution of the different TH-eGFP interneuronal subtypes did not differ in dorsal versus ventral striatum. However, striatal TH-eGFP interneurons were found to be mostly in the matrix in the dorsal striatum whereas a significantly higher proportion of these neurons was located in MOR-enriched domains of the ventral striatum. Further, the majority of striatal TH-eGFP interneurons was found to be located within 100 µm of a striosome-matrix boundary. Taken together, the current results suggest that TH-eGFP interneurons obey different organizational principles in dorsal versus ventral striatum, and may play a role in communication between striatal striosome and matrix compartments.

7.
J Neurochem ; 100(5): 1247-56, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17241132

ABSTRACT

The nucleus accumbens is believed to play a critical role in mediating the behavioral responses to rewarding stimuli. Although most studies of the accumbens focus on dopamine, it receives afferents from many other nuclei, including noradrenergic cell groups in the brainstem. We used in vivo microdialysis to measure extracellular levels of both norepinephrine and dopamine in the accumbens shell and core. Regional analysis of shell and core and border regions demonstrated that norepinephrine was high in shell and decreased from medial shell to lateral core, where baseline levels were low or undetectable. Conversely, extracellular dopamine in core was twice the level seen in shell. Both catecholamines increased following a single injection of amphetamine (2 mg/kg, i.p.). The norepinephrine response was greater and long-lasting in shell compared with core. The maximal dopamine response was higher in core than in shell, but the duration of the effect was comparable in both regions. The distinct neurochemical characteristics of shell and core are likely to contribute to the functional heterogeneity of the two subregions. Furthermore, norepinephrine may be involved in many of the functions generally attributed to the accumbens, either directly or indirectly via modulation of extracellular dopamine.


Subject(s)
Amphetamine/pharmacology , Central Nervous System Stimulants/pharmacology , Dopamine/metabolism , Norepinephrine/metabolism , Nucleus Accumbens/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Extracellular Space/metabolism , Homovanillic Acid/metabolism , Male , Microdialysis , Nucleus Accumbens/anatomy & histology , Rats , Rats, Sprague-Dawley
8.
J Neurochem ; 84(3): 576-84, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12558977

ABSTRACT

Nigrostriatal dopaminergic neurons release dopamine from dendrites in substantia nigra and axon terminals in striatum. The cellular mechanisms for somatodendritic and axonal dopamine release are similar, but somatodendritic and nerve terminal dopamine release may not always occur in parallel. The current studies used in vivo microdialysis to simultaneously measure changes in dendritic and nerve terminal dopamine efflux in substantia nigra and ipsilateral striatum respectively, following intranigral application of various drugs by reverse dialysis through the nigral probe. The serotonin releasers (+/-)-fenfluramine (100 micro m) and (+)-fenfluramine (100 micro m) significantly increased dendritic dopamine efflux without affecting extracellular dopamine in striatum. The non-selective serotonin receptor agonist 1-(m-chlorophenyl)-piperazine (100 micro m) elicited a similar pattern of dopamine release in substantia nigra and striatum. NMDA (33 micro m) produced an increase in nigral dopamine of a similar magnitude to mCPP or either fenfluramine drug. However, NMDA also induced a concurrent increase in striatal dopamine. The D2 agonist quinpirole (100 micro m) had a parallel inhibitory effect on dopamine release from dendritic and terminal sites as well. Taken together, these data suggest that serotonergic afferents to substantia nigra may evoke dendritic dopamine release through a mechanism that is uncoupled from the impulse-dependent control of nerve terminal dopamine release.


Subject(s)
Dendrites/metabolism , Dopamine/metabolism , Presynaptic Terminals/metabolism , Serotonin/metabolism , Substantia Nigra/metabolism , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine/analysis , Drug Administration Routes , Excitatory Amino Acid Agonists/pharmacology , Extracellular Space/chemistry , Extracellular Space/metabolism , Male , Microdialysis , N-Methylaspartate/pharmacology , Rats , Rats, Sprague-Dawley , Serotonin Receptor Agonists/pharmacology , Selective Serotonin Reuptake Inhibitors/administration & dosage , Stereoisomerism , Substantia Nigra/drug effects , Wakefulness/physiology
10.
J Neurosci ; 22(4): 1407-13, 2002 Feb 15.
Article in English | MEDLINE | ID: mdl-11850467

ABSTRACT

The regulation of dendritic dopamine release in the substantia nigra (SN) likely involves multiple mechanisms. GABA and glutamate inputs to nigrostriatal dopamine neurons exert powerful influences on dopamine neuron physiology; therefore, it is probable that GABA and glutamate likewise influence dendritic dopamine release, at least under some conditions. The present studies used in vivo microdialysis to determine the potential roles of nigral GABA and glutamate receptors in the regulation of dendritic dopamine release under normal conditions and when dopamine signaling in the basal ganglia is compromised after systemic haloperidol administration. Nigral application of the GABA(A) receptor antagonist bicuculline by reverse dialysis significantly increased spontaneous dopamine efflux in the SN. However, spontaneous dopamine efflux in the SN was not significantly affected by local application of the glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione or (+/-)-3-[2-carboxypiperazine-4-yl]-propyl-1-phosphonic acid. Systemic haloperidol administration significantly increased the extracellular dopamine measured in the SN. Blockade of nigral GABA(A) receptors by local bicuculline application did not alter this effect of systemic haloperidol, despite the bicuculline-induced increase in spontaneous dendritic dopamine efflux. In contrast, nigral application of either glutamate receptor antagonist significantly attenuated the increases in dendritic dopamine efflux elicited by systemic haloperidol. These data suggest that under normal conditions, activity of GABA afferents to SN dopamine neurons is an important determinant of the spontaneous level of dendritic dopamine release. Circuit-level changes in the basal ganglia involving an increased glutamatergic drive to the SN appear to underlie the increase in dendritic dopamine release that occurs in response to systemic haloperidol administration.


Subject(s)
Dendrites/metabolism , Dopamine/metabolism , Haloperidol/administration & dosage , Receptors, GABA/metabolism , Receptors, Glutamate/metabolism , Substantia Nigra/metabolism , Animals , Dendrites/drug effects , Dopamine/analysis , Dopamine Antagonists/administration & dosage , Excitatory Amino Acid Antagonists/administration & dosage , Extracellular Space/chemistry , Extracellular Space/metabolism , GABA Antagonists/administration & dosage , Injections, Intraperitoneal , Male , Microdialysis , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Substantia Nigra/cytology , Substantia Nigra/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...