Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol J ; 14(5): 1281-90, 2016 May.
Article in English | MEDLINE | ID: mdl-26503160

ABSTRACT

Unintended gene flow from transgenic plants via pollen, seed and vegetative propagation is a regulatory concern because of potential admixture in food and crop systems, as well as hybridization and introgression to wild and weedy relatives. Bioconfinement of transgenic pollen would help address some of these concerns and enable transgenic plant production for several crops where gene flow is an issue. Here, we demonstrate the expression of the restriction endonuclease EcoRI under the control of the tomato pollen-specific LAT52 promoter is an effective method for generating selective male sterility in Nicotiana tabacum (tobacco). Of nine transgenic events recovered, four events had very high bioconfinement with tightly controlled EcoRI expression in pollen and negligible-to-no expression other plant tissues. Transgenic plants had normal morphology wherein vegetative growth and reproductivity were similar to nontransgenic controls. In glasshouse experiments, transgenic lines were hand-crossed to both male-sterile and emasculated nontransgenic tobacco varieties. Progeny analysis of 16 000-40 000 seeds per transgenic line demonstrated five lines approached (>99.7%) or attained 100% bioconfinement for one or more generations. Bioconfinement was again demonstrated at or near 100% under field conditions where four transgenic lines were grown in close proximity to male-sterile tobacco, and 900-2100 seeds per male-sterile line were analysed for transgenes. Based upon these results, we conclude EcoRI-driven selective male sterility holds practical potential as a safe and reliable transgene bioconfinement strategy. Given the mechanism of male sterility, this method could be applicable to any plant species.


Subject(s)
Nicotiana/genetics , Plant Infertility/genetics , Deoxyribonuclease EcoRI/metabolism , Gene Flow , Genetic Engineering , Hybridization, Genetic , Organ Specificity , Plants, Genetically Modified , Pollen/genetics , Promoter Regions, Genetic/genetics , Seeds/genetics , Transgenes
2.
Evodevo ; 2(1): 14, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21722365

ABSTRACT

BACKGROUND: A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-ß-glucan) walls and septae (callose plugs) of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS). Of 12 CalS gene family members in Arabidopsis, only one (CalS5) has been directly linked to pollen tube callose. CalS5 orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of CalS5 or what its ancestral function may have been. RESULTS: We investigated expression of CalS in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms) and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a CalS5 orthologue from Cabomba caroliniana (CcCalS5) (Nymphaeales). Semi-quantitative RT-PCR demonstrated low CcCalS5 expression within several vegetative tissues, but strong expression in mature pollen. CalS transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to CalS5. We also report in silico evidence of a putative CalS5 orthologue from Amborella. Among gymnosperms, CalS5 transcripts were recovered from germinating pollen of Gnetum and Ginkgo, but a novel CalS paralog was instead amplified from germinating pollen of Pinus taeda. CONCLUSION: The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that CalS5 had transient expression and pollen-specific functions in early seed plants and was then recruited to novel expression patterns and functions within pollen tube walls in an ancestor of extant angiosperms.

3.
Environ Manage ; 46(4): 531-8, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20512489

ABSTRACT

Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant's biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate technologies that could be applied to perennial grass feedstocks for biocontainment are discussed.


Subject(s)
Biofuels , Biotechnology/methods , Energy-Generating Resources , China
4.
Funct Integr Genomics ; 9(4): 537-47, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19543758

ABSTRACT

High explosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and 2,4,6-trinitrotoluene (TNT) are important contaminants in the environment and phytoremediation has been viewed as a cost-effective abatement. There remains, however, an insufficient knowledge-base about how plants respond to explosives, especially in the steady state. Microarray analysis was conducted on Arabidopsis thaliana that were grown in Murashige and Skoog media containing steady-state levels of 0.5 mM RDX or 2.0 microM TNT to study the effect of these compounds on its transcriptional profile. Our results for both RDX and TNT were consistent with the existing theory for xenobiotic metabolism in plants. Among the genes that were differentially expressed included oxidoreductases, cytochrome P450s, transferases, transporters, and several unknown expressed proteins. We discuss the potential role of upregulated genes in plant metabolism, phytoremediation, and phytosensing. Phytosensing, the detection of field contamination using plants, is an end goal of this project.


Subject(s)
Arabidopsis , Biodegradation, Environmental , Explosive Agents/metabolism , Triazines/metabolism , Trinitrotoluene/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Humans , Meta-Analysis as Topic , Microarray Analysis , Molecular Sequence Data
5.
BMC Plant Biol ; 8: 87, 2008 Aug 06.
Article in English | MEDLINE | ID: mdl-18684332

ABSTRACT

BACKGROUND: Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V)] and phosphate (Pi). Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V) stress. RESULTS: Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases) play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD) (at2g28190), Cu/Zn SOD (at1g08830), as well as an SOD copper chaperone (at1g12520). On the other hand, Fe SODs were strongly repressed in response to As (V) stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays. CONCLUSION: Microarray data suggest that As (V) induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V) as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Arsenates/toxicity , Phosphates/metabolism , Transcription, Genetic , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cluster Analysis , Gene Expression Profiling , Genes, Plant , Oligonucleotide Array Sequence Analysis , Oxidative Stress , RNA, Plant/genetics , Reverse Transcriptase Polymerase Chain Reaction , Statistics, Nonparametric , Superoxide Dismutase/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...