Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 20 Suppl 6: A984-90, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23187675

ABSTRACT

Pulsed laser ablation is increasingly being applied to locally open the rear dielectric layer of advanced silicon wafer solar cell structures, such as aluminum local back surface field solar cells. We report that the laser ablation process on the rear surface of the solar cell at a relatively low laser fluence can cause undesirable spallation at the front surface which is textured with random upright pyramids. This phenomenon is attributed to the enhancement of the surface spallation effect by up to 3 times due to the confinement of the pressure waves at the tips of these random pyramids. Laser ablation at different laser focus positions and laser fluences is carried out to achieve optimized laser processing of the solar cells.

2.
Opt Express ; 20(28): 29488-99, 2012 Dec 31.
Article in English | MEDLINE | ID: mdl-23388775

ABSTRACT

Light trapping is of very high importance for silicon photovoltaics (PV) and especially for thin-film silicon solar cells. In this paper we investigate and compare theoretically the light trapping properties of periodic and stochastic structures having similar geometrical features. The theoretical investigations are based on the actual surface geometry of a scattering structure, characterized by an atomic force microscope. This structure is used for light trapping in thin-film microcrystalline silicon solar cells. Very good agreement is found in a first comparison between simulation and experimental results. The geometrical parameters of the stochastic structure are varied and it is found that the light trapping mainly depends on the aspect ratio (length/height). Furthermore, the maximum possible light trapping with this kind of stochastic structure geometry is investigated. In a second step, the stochastic structure is analysed and typical geometrical features are extracted, which are then arranged in a periodic structure. Investigating the light trapping properties of the periodic structure, we find that it performs very similar to the stochastic structure, in agreement with reports in literature. From the obtained results we conclude that a potential advantage of periodic structures for PV applications will very likely not be found in the absorption enhancement in the solar cell material. However, uniformity and higher definition in production of these structures can lead to potential improvements concerning electrical characteristics and parasitic absorption, e.g. in a back reflector.

3.
Opt Express ; 20(23): A984-90, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23326846

ABSTRACT

Pulsed laser ablation is increasingly being applied to locally open the rear dielectric layer of advanced silicon wafer solar cell structures, such as aluminum local back surface field solar cells. We report that the laser ablation process on the rear surface of the solar cell at a relatively low laser fluence can cause undesirable spallation at the front surface which is textured with random upright pyramids. This phenomenon is attributed to the enhancement of the surface spallation effect by up to 3 times due to the confinement of the pressure waves at the tips of these random pyramids. Laser ablation at different laser focus positions and laser fluences is carried out to achieve optimized laser processing of the solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...