Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Extracell Vesicles ; 11(4): e12207, 2022 04.
Article in English | MEDLINE | ID: mdl-35398993

ABSTRACT

Nanoparticles can acquire a plasma protein corona defining their biological identity. Corona functions were previously considered for cell-derived extracellular vesicles (EVs). Here we demonstrate that nano-sized EVs from therapy-grade human placental-expanded (PLX) stromal cells are surrounded by an imageable and functional protein corona when enriched with permissive technology. Scalable EV separation from cell-secreted soluble factors via tangential flow-filtration (TFF) and subtractive tandem mass-tag (TMT) proteomics revealed significant enrichment of predominantly immunomodulatory and proangiogenic proteins. Western blot, calcein-based flow cytometry, super-resolution and electron microscopy verified EV identity. PLX-EVs partly protected corona proteins from protease digestion. EVs significantly ameliorated human skin regeneration and angiogenesis in vivo, induced differential signalling in immune cells, and dose-dependently inhibited T cell proliferation in vitro. Corona removal by size-exclusion or ultracentrifugation abrogated angiogenesis. Re-establishing an artificial corona by cloaking EVs with fluorescent albumin as a model protein or defined proangiogenic factors was depicted by super-resolution microscopy, electron microscopy and zeta-potential shift, and served as a proof-of-concept. Understanding EV corona formation will improve rational EV-inspired nano-therapy design.


Subject(s)
Extracellular Vesicles , Protein Corona , Extracellular Vesicles/metabolism , Female , Humans , Immunomodulation , Placenta , Pregnancy , Protein Corona/metabolism , Proteomics
2.
Front Med (Lausanne) ; 8: 739987, 2021.
Article in English | MEDLINE | ID: mdl-34765617

ABSTRACT

Advanced therapy medicinal products (ATMPs) are potential game changers in modern medical care with an anticipated major impact for patients and society. They are a new drug class often referred to as "living drugs," and are based on complex components such as vectors, cells and even tissues. The production of such ATMPs involves innovative biotechnological methods. In this survey, we have assessed the perception of European citizens regarding ATMPs and health care in Europe, in relation to other important topics, such as safety and security, data protection, climate friendly energy supply, migration, and others. A crucial question was to determine to what extent European citizens wish to support public funding of innovations in healthcare and reimbursement strategies for ATMPs. To answer this, we conducted an online survey in 13 European countries (representative of 85.3% of the entire EU population including the UK in 2020), surveying a total of 7,062 European citizens. The survey was representative with respect to adult age groups and gender in each country. Healthcare had the highest ranking among important societal topics. We found that 83% of the surveyed EU citizens were in support of more public funding of technologies in the field of ATMPs. Interestingly, 74% of respondents are in support of cross-border healthcare for patients with rare diseases to receive ATMP treatments and 61% support the reimbursement of very expensive ATMPs within the European health care system despite the current lack of long-term efficacy data. In conclusion, healthcare is a top ranking issue for European Citizens, who additionally support funding of new technologies to enable the wider application of ATMPs in Europe.

3.
Eur J Vasc Endovasc Surg ; 57(4): 538-545, 2019 04.
Article in English | MEDLINE | ID: mdl-30686676

ABSTRACT

BACKGROUND: Critical limb ischaemia (CLI) is a life threatening condition with a considerable risk of major amputation and death. Besides revascularisation, no treatment has been proven to reduce the risks. Therapeutic angiogenesis by gene or cell therapy has not demonstrated definitive evidence in randomised controlled trials. PLX-PAD is an "off the shelf" allogeneic placental derived, mesenchymal like cell therapy, which, in preclinical studies, has shown pro-angiogenic, anti-inflammatory, and regenerative properties. Favourable one year amputation free survival (AFS), and trends in reduction of pain scores and increase of tissue perfusion have been shown in two small, open label, phase I trials. METHODS: The PACE study is a phase III randomised, double blind, multicentre, multinational placebo controlled, parallel group study to evaluate the efficacy, tolerability, and safety of intramuscular injections of PLX-PAD cells to treat patients with atherosclerotic CLI with minor tissue loss (Rutherford Category 5) up to the ankle level, who are unsuitable for revascularisation or carry an unfavourable risk benefit for that treatment. The study will enroll 246 patients, who after screening are randomised in a ratio of 2:1 to treatment with intramuscular injections of PLX-PAD 300 × 106 cells or placebo on two occasions, eight weeks apart. The primary efficacy endpoint is time to major amputation or death (amputation free survival), which will be assessed in follow up of at least 12 months and up to 36 months. CONCLUSIONS: Based on favourable pre-clinical and initial clinical study results, the PACE phase III randomised controlled trial will evaluate placenta derived PLX-PAD cell treatment in patients with critical limb ischaemia, with an unfavourable risk benefit for revascularisation. Clinicaltrials.gov: NCT03006770.


Subject(s)
Allogeneic Cells/physiology , Ischemia/surgery , Lower Extremity/blood supply , Mesenchymal Stem Cell Transplantation/methods , Placenta/cytology , Aged , Aged, 80 and over , Amputation, Surgical , Clinical Trials, Phase II as Topic , Critical Illness , Double-Blind Method , Female , Humans , Ischemia/diagnosis , Ischemia/mortality , Ischemia/physiopathology , Limb Salvage , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/mortality , Middle Aged , Multicenter Studies as Topic , Pregnancy , Progression-Free Survival , Randomized Controlled Trials as Topic , Time Factors , Transplantation, Homologous , Treatment Outcome
4.
J Cachexia Sarcopenia Muscle ; 9(6): 1079-1092, 2018 12.
Article in English | MEDLINE | ID: mdl-30334381

ABSTRACT

BACKGROUND: Most current cell-based regenerative therapies are based on the indirect induction of the affected tissues repair. Xenogeneic cell-based treatment with expanded human placenta stromal cells, predominantly from fetal origin (PLX-RAD cells), were shown to mitigate significantly acute radiation syndrome (ARS) following high dose irradiation in mice, with expedited regain of weight loss and haematopoietic function. The current mechanistic study explores the indirect effect of the secretome of PLX-RAD cells in the rescue of the irradiated mice. METHODS: The mitigation of the ARS was investigated following two intramuscularly (IM) injected 2 × 106 PLX-RAD cells, 1 and 5 days following 7.7 Gy irradiation. The mice survival rate and their blood or bone marrow (BM) cell counts were followed up and correlated with multiplex immunoassay of a panel of related human proteins of PLX-RAD derived secretome, as well as endogenous secretion of related mouse proteins. PLX-RAD secretome was also tested in vitro for its effect on the induction of the migration of BM progenitors. RESULTS: A 7.7 Gy whole body mice irradiation resulted in ~25% survival by 21 days. Treatment with two IM injections of 2 × 106 PLX-RAD cells on days 1 and 5 after irradiation mitigated highly significantly the subsequent lethal ARS, with survival rate increase to nearly 100% and fast regain of the initial weight loss (P < 0,0001). This was associated with a significant faster haematopoiesis recovery from day 9 onwards (P < 0.01). Nine out of the 65 human proteins tested were highly significantly elevated in the mouse circulation, peaking on days 6-9 after irradiation, relative to negligible levels in non-irradiated PLX-RAD injected mice (P < 0.01). The highly elevated proteins included human G-CSF, GRO, MCP-1, IL-6 and lL-8, reaching >500 pg/mL, while MCP-3, ENA, Eotaxin and fractalkine levels ranged between ~60-160pg/mL. The detected radiation-induced PLX-RAD secretome correlated well with the timing of the fast haematopoiesis regeneration. The radiation-induced PLX-RAD secretome seemed to reinforce the delayed high levels secretion of related mouse endogenous cytokines, including GCSF, KC, MCP-1 and IL-6. Additional supportive in vitro studies also confirmed the ability of cultured PLX-RAD secretome to induce accelerated migration of BM progenitors. CONCLUSIONS: A well-regulated and orchestrated secretion of major pro-regenerative BM supporting secretome in high dose irradiated mice, treated with xenogeneic IM injected PLX-RAD cells, can explain the observed mitigation of ARS. This seemed to coincide with faster haematopoiesis regeneration, regain of severe weight loss and the increased survival rate. The ARS-related stress signals activating the IM injected PLX-RAD cells for the remote secretion of the relevant human proteins deserve further investigation.


Subject(s)
Acute Radiation Syndrome/metabolism , Acute Radiation Syndrome/therapy , Placenta/cytology , Stromal Cells/metabolism , Stromal Cells/transplantation , Weight Loss , Acute Radiation Syndrome/diagnosis , Animals , Cell Transplantation , Cytokines , Disease Models, Animal , Female , Hematopoiesis , Humans , Injections, Intramuscular , Male , Mice , Pregnancy , Whole-Body Irradiation
5.
Sci Rep ; 8(1): 670, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330447

ABSTRACT

Culturing 3D-expanded human placental-derived adherent stromal cells (ASCs) in the presence of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) transiently upregulated the secretion of numerous anti-proliferative, anti-angiogenic and pro-inflammatory cytokines. In a 3D-spheroid screening assay, conditioned medium from these induced-ASCs inhibited proliferation of cancer cell lines, including triple-negative breast cancer (TNBC) lines. In vitro co-culture studies of induced-ASCs with MDA-MB-231 human breast carcinoma cells, a model representing TNBC, supports a mechanism involving immunomodulation and angiogenesis inhibition. In vivo studies in nude mice showed that intramuscular administration of induced-ASCs halted MDA-MB-231 cell proliferation, and inhibited tumor progression and vascularization. Thirty percent of treated mice experienced complete tumor remission. Murine serum concentrations of the tumor-supporting cytokines Interleukin-6 (IL-6), Vascular endothelial growth factor (VEGF) and Granulocyte-colony stimulating factor (G-CSF) were lowered to naïve levels. A somatic mutation analysis identified numerous genes which could be screened in patients to increase a positive therapeutic outcome. Taken together, these results show that targeted changes in the secretion profile of ASCs may improve their therapeutic potential.


Subject(s)
Cell Transplantation/methods , Culture Media, Conditioned/pharmacology , Interferon-gamma/pharmacology , Placenta/cytology , Triple Negative Breast Neoplasms/therapy , Tumor Necrosis Factor-alpha/pharmacology , Animals , Cell Adhesion , Cell Line, Tumor , Cell Proliferation/drug effects , Coculture Techniques , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Granulocyte Colony-Stimulating Factor/metabolism , Humans , Injections, Intramuscular , Interleukin-6/metabolism , Mice , Mice, Nude , Placenta/drug effects , Pregnancy , Stromal Cells/cytology , Triple Negative Breast Neoplasms/metabolism , Vascular Endothelial Growth Factor A/metabolism , Xenograft Model Antitumor Assays
6.
Cytotherapy ; 19(12): 1438-1446, 2017 12.
Article in English | MEDLINE | ID: mdl-29122516

ABSTRACT

BACKGROUND: In peripheral artery disease (PAD), blockage of the blood supply to the limbs, most frequently the legs, leads to impaired blood flow and tissue ischemia. Pluristem's PLX-PAD cells are placenta-derived mesenchymal stromal-like cells currently in clinical trials for the treatment of peripheral artery diseases. METHODS: In this work, the hind limb ischemia (HLI) mouse model was utilized to study the efficacy and mechanism of action of PLX-PAD cells. ELISA assays were performed to characterize and quantitate PLX-PAD secretions in vitro. RESULTS: PLX-PAD cells administered intramuscularly rescued blood flow to the lower limb after HLI induction in a dose-dependent manner. While rescue of blood flow was site-dependent, numerous administration regimes enabled rescue of blood flow, indicating a systemic effect mediated by PLX-PAD secretions. Live PLX-PAD cells were more efficacious than cell lysate in rescuing blood flow, indicating the importance of prolonged cytokine secretion for maximal blood flow recovery. In vitro studies showed a multifactorial secretion profile including numerous pro-angiogenic proteins; these are likely involved in the PLX-PAD mechanism of action. DISCUSSION: Live PLX-PAD cells were efficacious in rescuing blood flow after the induction of HLI in the mouse model in a dose- and site-dependent manner. The fact that various administration routes of PLX-PAD rescued blood flow indicates that the mechanism of action likely involves one of systemic secretions which promote angiogenesis. Taken together, the data support the further clinical testing of PLX-PAD cells for PAD indications.


Subject(s)
Hindlimb/blood supply , Peripheral Arterial Disease/therapy , Placenta/cytology , Stromal Cells/transplantation , Animals , Cytokines/metabolism , Disease Models, Animal , Female , Ischemia/physiopathology , Ischemia/therapy , Male , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL , Pregnancy , Regional Blood Flow
7.
Stem Cells Transl Med ; 6(12): 2135-2145, 2017 12.
Article in English | MEDLINE | ID: mdl-29024485

ABSTRACT

Left ventricular (LV) diastolic dysfunction is among others attributed to cardiomyocyte stiffness. Mesenchymal stromal cells (MSC) have cardiac-protective properties. We explored whether intravenous (i.v.) application of PLacenta-eXpanded (PLX) MSC-like cells (PLX) improves LV diastolic relaxation in streptozotocin (STZ)-induced diabetic mice and investigated underlying mechanisms. Diabetes mellitus was induced by STZ application (50 mg/kg body weight) during five subsequent days. One week after the first STZ injection, PLX or saline were i.v. applied. Two weeks later, mice were hemodynamically characterized and sacrificed. At this early stage of diabetic cardiomyopathy with low-grade inflammation and no cardiac fibrosis, PLX reduced LV vascular cell adhesion molecule-1, transforming growth factor-ß1, and interferon-γ mRNA expression, induced the percentage of circulating regulatory T cells, and decreased the splenic pro-fibrotic potential in STZ mice. STZ + PLX mice exhibited higher LV vascular endothelial growth factor mRNA expression and arteriole density versus STZ mice. In vitro, hyperglycemic PLX conditioned medium restored the hyperglycemia-impaired tube formation and adhesion capacity of human umbelical vein endothelial cells (HUVEC) via increasing nitric oxide (NO) bioavailability. PLX further induced the diabetes-downregulated activity of the NO downstream protein kinase G, as well as of protein kinase A, in STZ mice, which was associated with a raise in phosphorylation of the titin isoforms N2BA and N2B. Concomitantly, the passive force was lower in single isolated cardiomyocytes from STZ + PLX versus from STZ mice, which led to an improvement of LV diastolic relaxation. We conclude that i.v. PLX injection improves diabetes mellitus-associated diastolic performance via decreasing cardiomyocyte stiffness. Stem Cells Translational Medicine 2017;6:2135-2145.


Subject(s)
Diabetes Mellitus, Experimental/therapy , Diabetic Cardiomyopathies/therapy , Mesenchymal Stem Cell Transplantation/methods , Ventricular Function , Animals , Cells, Cultured , Diastole , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Placenta/cytology , Pregnancy
8.
PLoS One ; 8(6): e66549, 2013.
Article in English | MEDLINE | ID: mdl-23823334

ABSTRACT

Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×10(6) cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective "off the shelf" therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia.


Subject(s)
Cell Transplantation , Placenta/cytology , Radiation Injuries/therapy , Stromal Cells/cytology , Animals , Cell Adhesion , Female , Flow Cytometry , Humans , Injections, Intramuscular , Male , Mice , Pregnancy , Whole-Body Irradiation
9.
Brain Res ; 1315: 128-36, 2010 Feb 22.
Article in English | MEDLINE | ID: mdl-20004649

ABSTRACT

The beneficial effects of bone marrow-derived mesenchymal stromal cell (MSC) administration following experimental stroke have already been described. Despite several promising characteristics, placenta-derived MSC have not been used in models of focal ischemia. The aim of the current study is to investigate the impact of intravenously transplanted placenta-derived MSC on post-stroke recovery. Permanent occlusion of the middle cerebral artery was induced in spontaneously hypertensive rats. MSC were obtained from the human maternal or fetal placenta and intravenously administered after 24 h (single transplantation) or after 8 h and 24 h (dual transplantation). Sensorimotor deficits were quantified for 60 days using the beam walk test and the modified Neurological Severity Score system. Infarct volume was determined in vivo by means of magnetic resonance imaging on days 1, 8, 29 and 60. Astroglial reactivity was semiquantitatively ascertained within a small and a broad region adjacent to the lesion border. The double infusion of placental MSC was superior to single transplantation in the functional tests. However, a significant difference to the control group in all outcome parameters was observed only for maternally derived MSC. These findings suggest that placental tissue constitutes a promising source for experimental stroke therapies.


Subject(s)
Infarction, Middle Cerebral Artery/therapy , Mesenchymal Stem Cell Transplantation/methods , Placenta/cytology , Stroke/therapy , Stromal Cells/transplantation , Animals , Astrocytes/physiology , Brain/pathology , Brain/physiopathology , Disease Models, Animal , Female , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Injections, Intravenous , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Pregnancy , Random Allocation , Rats , Rats, Inbred SHR , Severity of Illness Index , Stroke/pathology , Stroke/physiopathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...