Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Rev Mar Sci ; 14: 405-430, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34437811

ABSTRACT

Ocean ventilation is the transfer of tracers and young water from the surface down into the ocean interior. The tracers that can be transported to depth include anthropogenic heat and carbon, both of which are critical to understanding future climate trajectories. Ventilation occurs in both high- and midlatitude regions, but it is the southern midlatitudes that are responsible for the largest fraction of anthropogenic heat and carbon uptake; such Southern Ocean ventilation is the focus of this review. Southern Ocean ventilation occurs through a chain of interconnected mechanisms, including the zonally averaged meridional overturning circulation, localized subduction, eddy-driven mixing along isopycnals, and lateral transport by subtropical gyres. To unravel the complex pathways of ventilation and reconcile conflicting results, here we assess the relative contribution of each of thesemechanisms, emphasizing the three-dimensional and temporally varying nature of the ventilation of the Southern Ocean pycnocline. We conclude that Southern Ocean ventilation depends on multiple processes and that simplified frameworks that explain ventilation changes through a single process are insufficient.


Subject(s)
Climate , Water Movements , Carbon/analysis , Hot Temperature , Oceans and Seas
2.
J Adv Model Earth Syst ; 11(7): 1917-1939, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31598190

ABSTRACT

Mesoscale eddies stir along the neutral plane, and the resulting neutral diffusion is a fundamental aspect of subgrid-scale tracer transport in ocean models. Calculating neutral diffusion traditionally involves calculating neutral slopes and three-dimensional tracer gradients. The calculation of the neutral slope traditionally occurs by computing the ratio of the horizontal to vertical locally referenced potential density derivative. However, this approach is problematic in regions of weak vertical stratification, prompting the use of a variety of ad hoc regularization methods that can lead to rather nonphysical dependencies for the resulting neutral tracer gradients. Here we use a VErtical Non-local Method "VENM," a search algorithm that requires no ad hoc regularization and significantly improves the numerical accuracy of calculating neutral slopes, neutral tracer gradients, and associated neutral diffusive fluxes. We compare and contrast VENM against a more traditional method, using an independent objective neutrality condition combined with estimates of spurious diffusion, heat transport, and water mass transformation rates. VENM is more accurate, both physically and numerically, and should form the basis for future efforts involving neutral diffusion calculations from observations and possibly numerical model simulations.

3.
Sci Adv ; 5(1): eaav5014, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30746480

ABSTRACT

Mesoscale turbulence in the ocean strongly affects the circulation, water mass formation, and transport of tracers. Little is known, however, about how mixing varies on climate timescales. We present the first time-resolved global dataset of lateral mesoscale eddy diffusivities at the ocean surface, obtained by applying the suppressed mixing length theory to satellite-observed velocities. We find interannual variability throughout the global ocean, regionally correlated with climate indices such as ENSO, NAO, DMI, and PDO. Changes in mixing length, driven by variations in the large-scale flow, often exceed the effect of variations in local eddy kinetic energy, previously thought of as the primary driver of variability in eddy mixing. This mechanism, not currently represented in global climate models, could have far-reaching consequences for the distribution of heat, salt, and carbon in the global ocean, as well as ecosystem dynamics and regional dynamics such as ENSO variance.

SELECTION OF CITATIONS
SEARCH DETAIL