Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Biomech ; 171: 112195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38878344

ABSTRACT

Movement biomarkers are crucial for assessing sensorimotor impairments and tracking the effects of interventions over time. The Uncontrolled Manifold (UCM) analysis has been proposed as a novel biomarker for evaluating movement stability and coordination in various motor tasks across neurological and musculoskeletal disorders. Through inter-trial analysis, the UCM partitions the variance of elemental variables (e.g., finger forces) into components that affect (VORT) and do not affect (VUCM) a performance variable (e.g., total force). A third index, ΔV, is computed as the normalized difference between VORT and VUCM. However, the minimum number of trials required to achieve stable UCM estimates, considering its clinimetric properties, is unknown. This study aimed to determine the minimal number (N) of trials for UCM estimates by computing bootstrap estimates of standard errors (SE) at different N trials using thresholds based on the minimal detectable change (MDC, i.e., the minimum change in an outcome measure beyond measurement error). Thirteen adults (24.6 ± 1.1 years old) performed a finger-pressing coordination task. We computed the 95 % confidence intervals (CI) of bootstrap SE distributions for each UCM estimate and detected the lowest number of trials with the 95 % CI of SE below each MDC threshold. We found the minimal N of trials required was VUCM = 14, VORT = 4 and ΔV = 18. Our findings highlight that a relatively low number of trials (i.e., N = 18) are sufficient to compute all UCM estimates beyond the MDC, supporting the use of the UCM framework in clinical settings where many repetitions of a motor task are not practical.


Subject(s)
Fingers , Humans , Male , Female , Adult , Fingers/physiology , Movement/physiology , Young Adult , Psychomotor Performance/physiology , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...