Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 631-632: 962-986, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29728007

ABSTRACT

It is widely acknowledged that waterbodies are becoming increasingly affected by a wide range of drivers of change arising from human activity. To illustrate how this can be quantified a linked modelling approach was applied in the Thames river basin in southern UK. Changes to river flows, water temperature, river and reservoir quality were predicted under three contrasting future "storylines"; one an extension of present day rates of economic development, the others representing more extreme and less sustainable visions. Modelling revealed that lower baseflow conditions will arise under all storylines. For the less extreme storyline river water quality is likely to deteriorate but reservoir quality will improve slightly. The two more extreme futures could not be supported by current management strategies to meet water demand. To satisfy these scenarios, transfer of river water from outside the Thames river basin would be necessary. Consequently, some improvement over present day water quality in the river may be seen, and for most indicators conditions would be better than in the less extreme storyline. However, because phosphorus concentrations will rise, the invoked changes in water demand management would not be of a form suitable to prevent a marked deterioration in reservoir water quality.

2.
Sci Total Environ ; 390(1): 241-54, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-17988719

ABSTRACT

The importance of upland groundwater systems in providing a medium for nitrogen transformations and processes along flow paths is investigated within the Afon Gwy moorland catchment, Plynlimon, mid-Wales. Dissolved organic nitrogen (DON) was found to be the most abundant form of dissolved nitrogen (N) in most soils and groundwaters, accounting for between 47 and 72% of total dissolved nitrogen in shallow groundwater samples and up to 80% in deeper groundwaters. Groundwater DON may also be an important source of bio-available N in surface waters and marine systems fed by upland catchments. A conceptual model of N processes is proposed based on a detailed study along a transect of nested boreholes and soil suction samplers within the interfluve zone. Shallow groundwater N speciation reflects the soilwater N speciation implying a rapid transport mechanism and good connectivity between the soil and groundwater systems. Median nitrate concentrations were an order of magnitude lower within the soil zone (<5-31 microg/L) than in the shallow groundwaters (86-746 microg/L). Given the rapid hydrostatic response of the groundwater level within the soil zone, the shallow groundwater system is both a source and sink for dissolved N. Results from dissolved N(2)O, N(2)/Ar ratios and dissolved N chemistry suggests that microbial N transformations (denitrification and nitrification) may play an important role in controlling the spatial variation in soil and groundwater N speciation. Reducing conditions within the groundwater and saturated soils of the wet-flush zones on the lower hillslopes, a result of relatively impermeable drift deposits, are also important in controlling N speciation and transformation processes.


Subject(s)
Nitrogen/analysis , Water Pollutants, Chemical/analysis , Water Supply/analysis , Carbon/analysis , Environmental Monitoring , Geological Phenomena , Geology , Iron/analysis , Models, Theoretical , Nitrates/analysis , Nitrites/analysis , Oxidation-Reduction , Oxygen/analysis , Plants , Quaternary Ammonium Compounds/analysis , Rain , Soil/analysis , Wales , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...