Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 78(5): 860-878, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38280202

ABSTRACT

Population genetic structure is influenced by a combination of contemporary and historical events; however, this structure can be complicated by ongoing gene flow. While it is well known that contemporary hybridization occurs frequently among many closely related species, it often remains uncertain as to which populations are involved in introgression events, and this can be even more difficult to infer when introgression is historical. Here we use restriction-site associated DNA sequencing to look at the level of introgression among four species of songbirds in North America: the black-capped, mountain, boreal, and chestnut-backed chickadee. Samples from both sympatric and allopatric sites across the species' ranges supported limited ongoing mixing among the four species with Bayesian clustering and principal component analyses. In contrast, f4-statistics and admixture graphs revealed extensive historical introgression among geographically structured populations. Almost all historical admixture events were among populations west of the Rocky Mountains, and almost all populations west of the Rocky Mountains, excluding island and coastal populations, showed evidence of historical admixture. The inclusion of all four chickadee species proved crucial in differentiating which species were involved in hybridization events to avoid erroneous conclusions. Taken together, the results suggest a complex pattern of divergence with gene flow.


Subject(s)
Gene Flow , Hybridization, Genetic , Songbirds , Animals , Songbirds/genetics , North America , Genetic Introgression , Sequence Analysis, DNA
2.
Funct Integr Genomics ; 23(1): 9, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36538186

ABSTRACT

Advancements in technology over the past few decades have resulted in the development of genome sequencing at lower costs. Protocols, costs, and the amount of data produced by different sequencing technologies are highly variable. Ion Torrent and Illumina sequencing instruments are two sequencing technologies which use very similar library preparation procedures. Enzymatic combinations can be changed in genotyping by sequencing (GbS) library protocols without significant adjustments. To compare the outputs from two different GbS procedures, we sequenced samples of two sister species of yellow-nosed albatross collected at multiple geographic locations. The data sets involving different sequencing instruments and enzymatic combinations were analysed using the Stacks pipeline and aligned to the same reference genome. Both procedures identified the same genetic clusters separating Atlantic and Indian yellow-nosed albatross and substructure within Indian yellow-nosed albatross.


Subject(s)
Genome , Genotyping Techniques , Genotype , Genotyping Techniques/methods , Chromosome Mapping/methods , High-Throughput Nucleotide Sequencing/methods , Genetics, Population , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...