Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-10, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279925

ABSTRACT

Human uracil DNA glycosylase (hUNG), a crucial player in the initiation of the base excision repair pathway, is susceptible to alterations in function and conformation induced by the accumulation of toxic metals. Despite the recognized impact of toxic metals on DNA repair enzymes, there exists a notable deficiency in theoretical investigations addressing this phenomenon. This study investigates the impact of toxic heavy metal ions, Pb(II) and Ni(II), on the stability of hUNG through molecular dynamics (MD) simulations. The initial analysis involved the identification of key cavities in the hUNG enzyme. Notably, the active site cavity emerged as a promising site for ligand binding. Subsequently, AutoDockTools software was employed to dock Pb(II) and Ni(II) onto the identified cavities, followed by extensive MD simulations. The MD analysis, encompassing parameters such as root mean square deviation, radius of gyration, solvent accessible surface area, hydrogen bond variations, Ramachandran plot, principal component analysis, and root mean square fluctuations, collectively revealed distinct alterations in the behavior of the enzyme upon complexation with Pb(II) and Ni(II). Interestingly, the enzyme exhibited enhanced structural stability, reduced flexibility, and modified hydrogen bonding patterns in the presence of these toxic metal ions. The observed limitation in structural flexibility implies a more rigid and stable conformation when the enzyme complex with Pb(II) and Ni(II) compared to its free form. This structural alteration may lead to a potential reduction in enzymatic activity, suggesting that toxic metal ions influence the functional dynamics of hUNG. These computational findings offer valuable insights into the molecular interactions between metal ions and enzymes.Communicated by Ramaswamy H. Sarma.

2.
Biomed Res Int ; 2019: 1369682, 2019.
Article in English | MEDLINE | ID: mdl-31687377

ABSTRACT

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) provides acquired immunity in microorganisms against exogenous DNA that may hinder the survival of the organism. Pioneering work by Doudna and Charpentier in 2012 resulted in the creation of the CRISPR/Cas9 genome editing tool on the basis of this concept. The aim of this was to create a rapid, efficient, and versatile genome-editing tool to facilitate genetic manipulation. The mechanism relies on two components: the RNA guide which acts as a sentinel and a Cas protein complex which functions as a highly precise molecular knife. The guide RNA can be modified to match a DNA sequence of interest in the cell and accordingly be used to rectify mutations that may otherwise cause disease. Within a few years following the development of the CRISPR/Cas9 tool, its usage has become ubiquitous. Its influence extends into many fields of biological sciences from biotechnology and biochemistry to molecular biology and biomedical sciences. The following review aims at shedding some light on to the applications of the CRISPR/Cas9 tool in the field of biomedical sciences, particularly gene therapy. An insight with relation to a few of the many diseases that are being tackled with the aid of the CRISPR/Cas9 mechanism and the trends, successes, and challenges of this application as a gene therapy are discussed in this review.


Subject(s)
CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome/genetics , Animals , Biotechnology/methods , Gene Editing/methods , Genomics/methods , Humans , RNA, Guide, Kinetoplastida/genetics
3.
Curr Top Biochem Res ; 17: 19-30, 2016.
Article in English | MEDLINE | ID: mdl-28018055

ABSTRACT

Thymidylate synthase (TSase) catalyzes a hydride transfer in the last step of the de novo biosynthesis of the DNA nucleotide thymine. We compared two isozymes, namely, TSase from Escherichia coli (ecTSase) and TSase from Bacillus subtilis (bsTSase) that represent a case of divergent evolution. Interestingly, a highly conserved histidine (H147 of ecTSase) was proposed to serve a critical role in catalysis, but in bsTSase it is naturally substituted by valine (Val). Yet, bsTSase is more active than ecTSase, and the intrinsic kinetic isotope effects (KIEs) of both are temperature-independent, suggesting a similarly well-organized transition state (TS) for the catalyzed hydride transfer. To examine the role of that histidine (His) in TSase catalysis, we examined the kinetics of H147V ecTSase, which "bridges" between these two TSases. In contrast to both wild-type TSases, the single mutation results in deficient catalysis. The mutation leads to intrinsic KIEs that are temperature-dependent, indicating a substantial imperfection in its TS. The findings reveal two important features: a direct role of H147 in the hydride transfer step catalyzed by the ecTSase and the evolutionary compensation for its deficiency in bsTSase via extensive polymorphism across the protein. Very different active site residues are observed for these evolutionarily divergent isozymes, which result in a well-organized TS for both. It is suggested that evolutionary pressure compensated for the H to V substitution at the active site of bsTSase by polymorphism leading to a well-organized TS in both enzymes.

4.
Phys Chem Chem Phys ; 17(46): 30867-75, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-25912171

ABSTRACT

The enzyme thymidylate synthase (TSase), an important chemotherapeutic drug target, catalyzes the formation of 2'-deoxythymidine-5'-monophosphate (dTMP), a precursor of one of the DNA building blocks. TSase catalyzes a multi-step mechanism that includes the abstraction of a proton from the C5 of the substrate 2'-deoxyuridine-5'-monophosphate (dUMP). Previous studies on ecTSase proposed that an active-site residue, Y94 serves the role of the general base abstracting this proton. However, since Y94 is neither very basic, nor connected to basic residues, nor located close enough to the pyrimidine proton to be abstracted, the actual identity of this base remains enigmatic. Based on crystal structures, an alternative hypothesis is that the nearest potential proton-acceptor of C5 of dUMP is a water molecule that is part of a hydrogen bond (H-bond) network comprised of several water molecules and several protein residues including H147, E58, N177, and Y94. Here, we examine the role of the residue Y94 in the proton abstraction step by removing its hydroxyl group (Y94F mutant). We investigated the effect of the mutation on the temperature dependence of intrinsic kinetic isotope effects (KIEs) and found that these KIEs are more temperature dependent than those of the wild-type enzyme (WT). These results suggest that the phenolic -OH of Y94 is a component of the transition state for the proton abstraction step. The findings further support the hypothesis that no single functional group is the general base, but a network of bases and hydroxyls (from water molecules and tyrosine) sharing H-bonds across the active site can serve the role of the general base to remove the pyrimidine proton.


Subject(s)
Thymidylate Synthase/metabolism , Binding Sites , Biocatalysis , Catalytic Domain , Deoxyuracil Nucleotides/metabolism , Hydrogen Bonding , Kinetics , Mutagenesis, Site-Directed , Protons , Temperature , Thymidylate Synthase/chemistry , Thymidylate Synthase/genetics , Water/chemistry
5.
Int J Mol Sci ; 16(4): 7304-19, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25837629

ABSTRACT

Recent studies of Escherichia coli thymidylate synthase (ecTSase) showed that a highly conserved residue, Y209, that is located 8 Å away from the reaction site, plays a key role in the protein's dynamics. Those crystallographic studies indicated that Y209W mutant is a structurally identical but dynamically altered relative to the wild type (WT) enzyme, and that its turnover catalytic rate governed by a slow hydride-transfer has been affected. The most challenging test of an examination of a fast chemical conversion that precedes the rate-limiting step has been achieved here. The physical nature of both fast and slow C-H bond activations have been compared between the WT and mutant by means of observed and intrinsic kinetic isotope effects (KIEs) and their temperature dependence. The findings indicate that the proton abstraction step has not been altered as much as the hydride transfer step. Additionally, the comparison indicated that other kinetic steps in the TSase catalyzed reaction were substantially affected, including the order of the substrate binding. Enigmatically, although Y209 is H-bonded to 3'-OH of 2'-deoxyuridine-5'-mono-phosphate (dUMP), its altered dynamics is more pronounced on the binding of the remote cofactor, (6R)-N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2H4folate), revealing the importance of long-range dynamics of the enzymatic complex and its catalytic function.


Subject(s)
Proteins/chemistry , Thymidylate Synthase/chemistry , Catalysis , Deoxyuracil Nucleotides/chemistry , Escherichia coli/metabolism , Kinetics , Protons , Temperature , Tetrahydrofolates/chemistry , Thermodynamics
6.
Molecules ; 20(1): 1192-209, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25591120

ABSTRACT

Enzyme motions on a broad range of time scales can play an important role in various intra- and intermolecular events, including substrate binding, catalysis of the chemical conversion, and product release. The relationship between protein motions and catalytic activity is of contemporary interest in enzymology. To understand the factors influencing the rates of enzyme-catalyzed reactions, the dynamics of the protein-solvent-ligand complex must be considered. The current review presents two case studies of enzymes-dihydrofolate reductase (DHFR) and thymidylate synthase (TSase)-and discusses the role of protein motions in their catalyzed reactions. Specifically, we will discuss the utility of kinetic isotope effects (KIEs) and their temperature dependence as tools in probing such phenomena.


Subject(s)
Proteins/metabolism , Tetrahydrofolate Dehydrogenase/metabolism , Thymidylate Synthase/metabolism , Catalysis , Kinetics , Proteins/chemistry
7.
J Am Chem Soc ; 135(20): 7583-92, 2013 May 22.
Article in English | MEDLINE | ID: mdl-23611499

ABSTRACT

Thymidylate synthase (TSase) produces the sole intracellular de novo source of thymidine (i.e., the DNA base T) and thus is a common target for antibiotic and anticancer drugs. Mg(2+) has been reported to affect TSase activity, but the mechanism of this interaction has not been investigated. Here we show that Mg(2+) binds to the surface of Escherichia coli TSase and affects the kinetics of hydride transfer at the interior active site (16 Å away). Examination of the crystal structures identifies a Mg(2+) near the glutamyl moiety of the folate cofactor, providing the first structural evidence for Mg(2+) binding to TSase. The kinetics and NMR relaxation experiments suggest that the weak binding of Mg(2+) to the protein surface stabilizes the closed conformation of the ternary enzyme complex and reduces the entropy of activation on the hydride transfer step. Mg(2+) accelerates the hydride transfer by ~7-fold but does not affect the magnitude or temperature dependence of the intrinsic kinetic isotope effect. These results suggest that Mg(2+) facilitates the protein motions that bring the hydride donor and acceptor together, but it does not change the tunneling ready state of the hydride transfer. These findings highlight how variations in cellular Mg(2+) concentration can modulate enzyme activity through long-range interactions in the protein, rather than binding at the active site. The interaction of Mg(2+) with the glutamyl tail of the folate cofactor and nonconserved residues of bacterial TSase may assist in designing antifolates with polyglutamyl substitutes as species-specific antibiotic drugs.


Subject(s)
Magnesium/chemistry , Thymidylate Synthase/chemistry , Binding Sites , Escherichia coli/enzymology , Magnesium/metabolism , Models, Molecular , Molecular Structure , Surface Properties , Thymidylate Synthase/metabolism , Water/chemistry , Water/metabolism
8.
J Am Chem Soc ; 134(42): 17722-30, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23034004

ABSTRACT

The role of protein flexibility in enzyme-catalyzed activation of chemical bonds is an evolving perspective in enzymology. Here we examine the role of protein motions in the hydride transfer reaction catalyzed by thymidylate synthase (TSase). Being remote from the chemical reaction site, the Y209W mutation of Escherichia coli TSase significantly reduces the protein activity, despite the remarkable similarity between the crystal structures of the wild-type and mutant enzymes with ligands representing their Michaelis complexes. The most conspicuous difference between these two crystal structures is in the anisotropic B-factors, which indicate disruption of the correlated atomic vibrations of protein residues in the mutant. This dynamically altered mutant allows a variety of small thiols to compete for the reaction intermediate that precedes the hydride transfer, indicating disruption of motions that preorganize the protein environment for this chemical step. Although the mutation causes higher enthalpy of activation of the hydride transfer, it only shows a small effect on the temperature dependence of the intrinsic KIE, suggesting marginal changes in the geometry and dynamics of the H-donor and -acceptor at the tunneling ready state. These observations suggest that the mutation disrupts the concerted motions that bring the H-donor and -acceptor together during the pre- and re-organization of the protein environment. The integrated structural and kinetic data allow us to probe the impact of protein motions on different time scales of the hydride transfer reaction within a complex enzymatic mechanism.


Subject(s)
Escherichia coli/enzymology , Thymidylate Synthase/metabolism , Biocatalysis , Crystallography, X-Ray , Kinetics , Models, Molecular , Molecular Structure , Mutation , Thymidylate Synthase/chemistry , Thymidylate Synthase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...