Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Protoc ; 17(4): 980-1003, 2022 04.
Article in English | MEDLINE | ID: mdl-35246649

ABSTRACT

[68Ga]Ga-PSMA-11, a urea-based peptidomimetic, is a diagnostic radiopharmaceutical for positron emission tomography (PET) imaging that targets the prostate-specific membrane antigen (PSMA). The recent Food and Drug Administration approval of [68Ga]Ga-PSMA-11 for PET imaging of patients with prostate cancer, expected follow-up approval of companion radiotherapeutics (e.g., [177Lu]Lu-PSMA-617, [225Ac]Ac-PSMA-617) and large prostate cancer patient volumes requiring access are poised to create an unprecedented demand for [68Ga]Ga-PSMA-11 in nuclear medicine clinics around the world. Meeting this global demand is going to require a variety of synthesis methods compatible with 68Ga eluted from a generator or produced on a cyclotron. To address this urgent need in the PET radiochemistry community, herein we report detailed protocols for the synthesis of [68Ga]Ga-PSMA-11, (also known as HBED-CC, Glu-urea-Lys(Ahx)-HBED-CC and PSMA-HBED-CC) using both generator-eluted and cyclotron-produced 68Ga and contrast the pros and cons of each method. The radiosyntheses are automated and have been validated for human use at two sites (University of Michigan (UM), United States; Royal Prince Alfred Hospital (RPA), Australia) and used to produce [68Ga]Ga-PSMA-11 for patient use in good activity yields (single generator, 0.52 GBq (14 mCi); dual generators, 1.04-1.57 GBq (28-42 mCi); cyclotron method (single target), 1.47-1.89 GBq (40-51 mCi); cyclotron method (dual target), 3.63 GBq (98 mCi)) and high radiochemical purity (99%) (UM, n = 645; RPA, n > 600). Both methods are appropriate for clinical production but, in the long term, the method employing cyclotron-produced 68Ga is the most promising for meeting high patient volumes. Quality control testing (visual inspection, pH, radiochemical purity and identity, radionuclidic purity and identity, sterile filter integrity, bacterial endotoxin content, sterility, stability) confirmed doses are suitable for clinical use, and there is no difference in clinical prostate cancer PET imaging using [68Ga]Ga-PSMA-11 prepared using the two production methods.


Subject(s)
Prostatic Neoplasms , Radiopharmaceuticals , Cyclotrons , Edetic Acid , Gallium Radioisotopes/chemistry , Humans , Male , Positron-Emission Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Urea
2.
J Nucl Med ; 63(4): 567-572, 2022 04.
Article in English | MEDLINE | ID: mdl-34326126

ABSTRACT

We prospectively investigated the performance of the prostate-specific membrane antigen (PSMA) ligand 68Ga-PSMA-11 for detecting prostate adenocarcinoma in patients with elevated levels of prostate-specific antigen (PSA) after initial therapy. Methods:68Ga-PSMA-11 hybrid PET was performed on 2,005 patients at the time of biochemically recurrent prostate cancer after radical prostatectomy (RP) (50.8%), definitive radiation therapy (RT) (19.7%), or RP with postoperative RT (PORT) (29.6%). The presence of prostate cancer was assessed qualitatively (detection rate = positivity rate) and quantitatively on a per-patient and per-region basis, creating a disease burden estimate from the presence or absence of local (prostate/prostate bed), nodal (N1: pelvis), and distant metastatic (M1: distant soft tissue and bone) disease. The primary study endpoint was the positive predictive value (PPV) of 68Ga-PSMA-11 PET/CT confirmed by histopathology. Results: After RP, the scan detection rate increased significantly with rising PSA level (44.8% at PSA < 0.25%-96.2% at PSA > 10 ng/mL; P < 0.001). The detection rate significantly increased with rising PSA level in each individual region, overall disease burden, prior androgen deprivation, clinical T-stage, and Gleason grading from the RP specimen (P < 0.001). After RT, the detection rate for in-gland prostate recurrence was 64.0%, compared with 20.6% prostate bed recurrence after RP and 13.3% after PORT. PSMA-positive pelvic nodal disease was detected in 42.7% after RP, 40.8% after PORT, and 38.8% after RT. In patients with histopathologic validation, the PPV per patient was 0.82 (146/179). The SUVmax of histologically proven true-positive lesions was significantly higher than that of false-positive lesions (median, 11.0 [interquartile range, 6.3-22.2] vs. 5.1 [interquartile range, 2.2-7.4]; P < 0.001). Conclusion: We confirmed a high PPV for 68Ga-PSMA-11 PET in biochemical recurrence and the PSA level as the main predictor of scan positivity.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Androgen Antagonists , Edetic Acid , Gallium Isotopes , Gallium Radioisotopes , Humans , Male , Neoplasm Recurrence, Local/pathology , Positron Emission Tomography Computed Tomography/methods , Prospective Studies , Prostatectomy/methods , Prostatic Neoplasms/pathology
3.
EJNMMI Radiopharm Chem ; 5(1): 25, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33180205

ABSTRACT

PURPOSE: To optimize the direct production of 68Ga on a cyclotron, via the 68Zn(p,n)68Ga reaction using a liquid cyclotron target. We Investigated the yield of cyclotron-produced 68Ga, extraction of [68Ga]GaCl3 and subsequent [68Ga]Ga-PSMA-11 labeling using an automated synthesis module. METHODS: Irradiations of a 1.0 M solution of [68Zn]Zn(NO3)2 in dilute (0.2-0.3 M) HNO3 were conducted using GE PETtrace cyclotrons and GE 68Ga liquid targets. The proton beam energy was degraded to a nominal 14.3 MeV to minimize the co-production of 67Ga through the 68Zn(p,2n)67Ga reaction without unduly compromising 68Ga yields. We also evaluated the effects of varying beam times (50-75 min) and beam currents (27-40 µA). Crude 68Ga production was measured. The extraction of [68Ga]GaCl3 was performed using a 2 column solid phase method on the GE FASTlab Developer platform. Extracted [68Ga]GaCl3 was used to label [68Ga]Ga-PSMA-11 that was intended for clinical use. RESULTS: The decay corrected yield of 68Ga at EOB was typically > 3.7 GBq (100 mCi) for a 60 min beam, with irradiations of [68Zn]Zn(NO3)2 at 0.3 M HNO3. Target/chemistry performance was more consistent when compared with 0.2 M HNO3. Radionuclidic purity of 68Ga was typically > 99.8% at EOB and met the requirements specified in the European Pharmacopoeia (< 2% combined 66/67Ga) for a practical clinical product shelf-life. The activity yield of [68Ga]GaCl3 was typically > 50% (~ 1.85 GBq, 50 mCi); yields improved as processes were optimized. Labeling yields for [68Ga]Ga-PSMA-11 were near quantitative (~ 1.67 GBq, 45 mCi) at EOS. Cyclotron produced [68Ga]Ga-PSMA-11 underwent full quality control, stability and sterility testing, and was implemented for human use at the University of Michigan as an Investigational New Drug through the US FDA and also at the Royal Prince Alfred Hospital (RPA). CONCLUSION: Direct cyclotron irradiation of a liquid target provides clinically relevant quantities of [68Ga]Ga-PSMA-11 and is a viable alternative to traditional 68Ge/68Ga generators.

SELECTION OF CITATIONS
SEARCH DETAIL
...