Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Drug Deliv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38275043

ABSTRACT

The advent of drug resistance in response to epidermal growth factor receptor (EGFR)- tyrosine kinase inhibitor (TKI) targeted therapy represents a serious challenge in the management of non-small cell lung cancer (NSCLC). These acquired resistance mutations, attributed to several advanced EGFR mutations and, necessitated the development of new-generation TKIs. Nanomedicine approaches provide a plausible way to address these problems by providing targeted delivery and sustained release, which have demonstrated success in preclinical trials. This review article provides a summary of nano-formulations designed for EGFR-TKI-resistant NSCLC, highlighting their efficacy in both in vitro and in vivo models. These findings reveal insights into the design of nanoparticles and multifunctional nanosystems, offering a potential avenue for efficacious treatment of EGFR-TKIresistant NSCLC.

2.
Drug Deliv Transl Res ; 14(2): 510-523, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37605040

ABSTRACT

Breast cancer is challenging to treat accompanied with poor clinical outcomes. Paclitaxel (PTX) is a first-line chemotherapeutic agent, but possesses limitations due to side effects, high dose, non-specific tissue distribution, and drug resistance. An epigenetic modulator, vorinostat (VOR) is known to enhance PTX efficacy and therefore to resolve the issues of conventional PTX formulations, we designed PTX- and VOR-bound albumin nanoparticles (PTX-VOR-BSA-NPs) using antisolvent precipitation technique where albumin is used as a carrier and a targeting agent. The PTX-VOR-BSA-NPs were of 140 nm size, polydispersity index around 0.18, and about 78% and 68% of entrapment efficiency for PTX and VOR, respectively. A bi-pattern release of both PTX and VOR was observed from PTX-VOR-BSA-NPs with a burst release for 2 h succeeded by sustained release until 24 h. A significantly lower %cell viability was observed in MCF-7 cell lines, while efficient cellular drug uptake was found in MDA-MB-231 cells. Furthermore, a greater apoptotic index was found compared to free PTX and VOR because of the synergistic activity of these drugs. The PTX-VOR-BSA-NPs also showcased superior pharmacokinetic profile and noteworthy reduction in the tumor volume compared to Intaxel in 4T1 cell line-induced breast tumor model. Further, the NPs showed similar levels of toxicity biomarkers as that of control. Overall, the developed PTX-VOR-BSA-NPs were found to have less toxicity and more effectiveness compared to the marketed formulation, thus affirming the generation of a potent as well as and safe product.


Subject(s)
Breast Neoplasms , Nanoparticles , Humans , Female , Paclitaxel/pharmacokinetics , Breast Neoplasms/drug therapy , Vorinostat , Albumins , MCF-7 Cells , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...