Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 921: 170950, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38360301

ABSTRACT

The study investigated inter-species variation in particulate matter (PM) accumulation, wash-off, and retention on green wall plants, with a focus on leaf characteristics. Ten broadleaf plant species were studied in an experimental green wall. Ambient PM concentrations remained relatively stable throughout the measurement period: PM1: 16.60 ± 9.97 µgm-3, PM2.5: 23.27 ± 11.88 µgm-3, and PM10: 39.59 ± 25.72 µgm-3. Leaf samples were taken before and after three rainfall events, and PM deposition was measured using Scanning Electron Microscopy (SEM). Leaf micromorphological traits, including surface roughness, hair density, and stomatal density, exhibited variability among species and leaf surfaces. Notably, I.sempervirens and H.helix had relatively high PM densities across all size fractions. The study underscored the substantial potential of green wall plants for atmospheric PM removal, with higher Wall Leaf Area Index (WLAI) species like A.maritima and T.serpyllum exhibiting increased PM accumulation at plant level. Rainfall led to significant wash-off for smaller particles, whereas larger particles exhibited lower wash-off rates. Leaf micromorphology impacted PM accumulation, although effects varied among species, and parameters such as surface roughness, stomatal density, and leaf size did not consistently affect PM deposition. The composition of deposited particles encompassed natural, vehicular, salt, and unclassified agglomerates, with minimal changes after rainfall. Air Pollution Tolerance Index (APTI) assessments revealed that I.sempervirens displayed the highest air pollution tolerance, while O.vulgare had the lowest. APTI showed a moderate positive correlation with PM deposition across all fractions. The study concluded that the interplay of macro and micromorphology in green wall plant species determines their PM removal potential. Further research is needed to identify the key leaf characteristics for optimal green wall species selection for effective PM removal.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter/analysis , Air Pollutants/analysis , Environmental Monitoring , Plants , Plant Leaves/chemistry , Trees
2.
Sci Total Environ ; 914: 169713, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38163588

ABSTRACT

This study investigated influences of leaf traits on particulate matter (PM) wash-off and (re)capture (i.e., net removal) over time. Leaf samples were taken before and after three rainfall events from a range of 10 evergreen woody plants (including five different leaf types), which were positioned with an optical particle counter alongside a busy road. Scanning electron microscopy was used to quantify the density (no./mm2), mass (µg/cm2), and elemental composition of deposited particles. To enable leaf area comparison between scale-like leaves and other leaf types, a novel metric (FSA: foliage surface area per unit branch length) was developed, which may be utilised by future research. Vehicle-related particles constituted 15 % of total deposition, and there was a notable 50 % decrease in the proportion of tyre wear particles after rainfall. T. baccata presented the lowest proportion (11.1 %) of vehicle-related particle deposition but the most consistent performance in terms of net PM removal. Only four of the 10 plant specimens (C. japonica, C. lawsoniana, J. chinensis, and T. baccata) presented effective PM wash-off across all particle size fractions and rainfall intensities, with a generally positive relationship observed between rainfall intensity and wash-off. Mass deposition was more significantly determined by particle size than number density. Interestingly, larger particles were also less easily washed off than smaller particles. Some traits typically considered to be advantageous (e.g., greater hairiness) may in fact hinder net removal over time due to retention under rainfall. Small leaf area is one trait that may promote both accumulation and wash-off. However, FSA was found to be the most influential trait, with an inverse relationship between FSA and wash-off efficacy. This finding poses trade-offs and opportunities for green infrastructure design, which are discussed. Finally, numerous areas for future research are recommended, underlining the importance of systems approaches in developing vegetation management frameworks.


Subject(s)
Air Pollutants , Air Pollution , Traffic-Related Pollution , Particulate Matter/analysis , Plants , Particle Size , Plant Leaves/chemistry , Air Pollutants/analysis , Environmental Monitoring , Trees
3.
Environ Int ; 155: 106688, 2021 10.
Article in English | MEDLINE | ID: mdl-34139587

ABSTRACT

Car microenvironments significantly contribute to the daily pollution exposure of commuters, yet health and socioeconomic studies focused on in-car exposure are rare. This study aims to assess the relationship between air pollution levels and socioeconomic indicators (fuel prices, city-specific GDP, road density, the value of statistical life (VSL), health burden and economic losses resulting from exposure to fine particulate matter ≤2.5 µm; PM2.5) during car journeys in ten cities: Dhaka (Bangladesh); Chennai (India); Guangzhou (China); Medellín (Colombia); São Paulo (Brazil); Cairo (Egypt); Sulaymaniyah (Iraq); Addis Ababa (Ethiopia); Blantyre (Malawi); and Dar-es-Salaam (Tanzania). Data collected by portable laser particle counters were used to develop a proxy of car-user exposure profiles. Hotspots on all city routes displayed higher PM2.5 concentrations and disproportionately high inhaled doses. For instance, the time spent at the hotspots in Guangzhou and Addis Ababa was 26% and 28% of total trip time, but corresponded to 54% and 56%, respectively, of the total PM2.5 inhaled dose. With the exception of Guangzhou, all the cities showed a decrease in per cent length of hotspots with an increase in GDP and VSL. Exposure levels were independent of fuel prices in most cities. The largest health burden related to in-car PM2.5 exposure was estimated for Dar-es-Salam (81.6 ± 39.3 µg m-3), Blantyre (82.9 ± 44.0) and Dhaka (62.3 ± 32.0) with deaths per 100,000 of the car commuting population per year of 2.46 (2.28-2.63), 1.11 (0.97-1.26) and 1.10 (1.05-1.15), respectively. However, the modest health burden of 0.07 (0.06-0.08), 0.10 (0.09-0.12) and 0.02 (0.02-0.03) deaths per 100,000 of the car commuting population per year were estimated for Medellin (23 ± 13.7 µg m-3), São Paulo (25.6 ± 11.7) and Sulaymaniyah (22.4 ± 15.0), respectively. Lower GDP was found to be associated with higher economic losses due to health burdens caused by air pollution in most cities, indicating a socioeconomic discrepancy. This assessment of health and socioeconomic parameters associated with in-car PM2.5 exposure highlights the importance of implementing plausible solutions to make a positive impact on peoples' lives in these cities.


Subject(s)
Air Pollutants , Air Pollution , Aerosols , Air Pollutants/analysis , Air Pollution/analysis , Automobiles , Bangladesh , Brazil , Cities , Environmental Exposure , Ethiopia , India , Particulate Matter/analysis
4.
Sustain Cities Soc ; 62: 102382, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32834936

ABSTRACT

The COVID-19 pandemic elicited a global response to limit associated mortality, with social distancing and lockdowns being imposed. In India, human activities were restricted from late March 2020. This 'anthropogenic emissions switch-off' presented an opportunity to investigate impacts of COVID-19 mitigation measures on ambient air quality in five Indian cities (Chennai, Delhi, Hyderabad, Kolkata, and Mumbai), using in-situ measurements from 2015 to 2020. For each year, we isolated, analysed and compared fine particulate matter (PM2.5) concentration data from 25 March to 11 May, to elucidate the effects of the lockdown. Like other global cities, we observed substantial reductions in PM2.5 concentrations, from 19 to 43% (Chennai), 41-53% (Delhi), 26-54% (Hyderabad), 24-36% (Kolkata), and 10-39% (Mumbai). Generally, cities with larger traffic volumes showed greater reductions. Aerosol loading decreased by 29% (Chennai), 11% (Delhi), 4% (Kolkata), and 1% (Mumbai) against 2019 data. Health and related economic impact assessments indicated 630 prevented premature deaths during lockdown across all five cities, valued at 0.69 billion USD. Improvements in air quality may be considered a temporary lockdown benefit as revitalising the economy could reverse this trend. Regulatory bodies must closely monitor air quality levels, which currently offer a baseline for future mitigation plans.

5.
Environ Pollut ; 265(Pt B): 114884, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32540594

ABSTRACT

The green infrastructure (GI) is identified as a passive exposure control measure of air pollution. This work examines particulate matter (PM) reduction by a roadside hedge and its deposition on leaves. The objectives of this study are to (i) quantify the relative difference in PM concentration in the presence of GI and at an adjacent clear area; (ii) estimate the total mass and number density of PM deposited on leaves of a hedge; (iii) ascertain variations in PM deposition at adult (1.5m) and child (0.6 m) breathing levels on either side of a hedge; (iv) illustrate the relationship between PM deposition to leaves and ambient PM concentration reductions; and (v) quantify the elemental composition of collected particles of the leaves on different heights and sides of hedge. PM reduction of 2-9% was observed behind hedge compared to a clear area and followed a trend of ΔPM1 >ΔPM10 >ΔPM2.5. Counting of particles was found to be an effective method to quantify deposition than weighting methods. Sub-micron particles (PM1) dominated particle deposition on leaves at all sampling points on both sides of the hedge. PM mass deposition and number concentration to the leaves on traffic-facing side was up to 36% and 58% higher at 0.6m compared with 1.5m height, respectively. Such a difference was absent on the backside of the hedge. The SEM-EDS analysis showed up to 12% higher traffic-originated particles deposited to leaves on the traffic-facing side compared to the backside. The naturally occurring particles dominated in identified particles on leaf samples from all collection points on the hedge. These new evidence expand our understanding of PM reduction of GI in the near-road environment and its variations in particle deposition, depending on height and sides of GI, which could allow a better parameterisation of dispersion-deposition models for GI assessment at micro-scale.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Child , Environmental Monitoring , Humans , Particle Size , Particulate Matter/analysis , Plant Leaves/chemistry
6.
Environ Int ; 133(Pt A): 105181, 2019 12.
Article in English | MEDLINE | ID: mdl-31675531

ABSTRACT

Cities are constantly evolving and so are the living conditions within and between them. Rapid urbanization and the ever-growing need for housing have turned large areas of many cities into concrete landscapes that lack greenery. Green infrastructure can support human health, provide socio-economic and environmental benefits, and bring color to an otherwise grey urban landscape. Sometimes, benefits come with downsides in relation to its impact on air quality and human health, requiring suitable data and guidelines to implement effective greening strategies. Air pollution and human health, as well as green infrastructure and human health, are often studied together. Linking green infrastructure with air quality and human health together is a unique aspect of this article. A holistic understanding of these links is key to enabling policymakers and urban planners to make informed decisions. By critically evaluating the link between green infrastructure and human health via air pollution mitigation, we also discuss if our existing understanding of such interventions is sufficient to inform their uptake in practice. Natural science and epidemiology approach the topic of green infrastructure and human health very differently. The pathways linking health benefits to pollution reduction by urban vegetation remain unclear and the mode of green infrastructure deployment is critical to avoid unintended consequences. Strategic deployment of green infrastructure may reduce downwind pollution exposure. However, the development of bespoke design guidelines is vital to promote and optimize greening benefits, and measuring green infrastructure's socio-economic and health benefits are key for their uptake. Greening cities to mitigate pollution effects is on the rise and these need to be matched by scientific evidence and appropriate guidelines. We conclude that urban vegetation can facilitate broad health benefits, but there is little empirical evidence linking these benefits to air pollution reduction by urban vegetation, and appreciable efforts are needed to establish the underlying policies, design and engineering guidelines governing its deployment.


Subject(s)
Air Pollution , Health , Humans , Urbanization
7.
Environ Pollut ; 204: 99-108, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25935610

ABSTRACT

This study investigates the passive-control-potentials of trees and on-street parked cars on pedestrian exposure to air pollutants in a street canyon using three-dimensional CFD. Since, according to some studies trees deteriorate air quality and cars parked roadside improve it, the combine as well as separate effects of trees and on-street parked cars have been examined. For this, different tree canopy layouts and parking configurations have been developed and pedestrian exposure for each has been analysed. The results showed, for example, tree crown with high porosity and low-stand density in combination with parallel or perpendicular car parking reduced the pedestrian exposure considerably.


Subject(s)
Air Pollutants/metabolism , Trees/metabolism , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Cities , Environmental Monitoring , Motor Vehicles , Parking Facilities
SELECTION OF CITATIONS
SEARCH DETAIL
...