Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 387: 110058, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36543012

ABSTRACT

Lysin EN4 is a peptidoglycan-degrading enzyme. Like other lysins against Gram-negative bacteria, EN4 requires cell-wall destabilizing agents, such as ethylenediamine tetraacetic acid (EDTA) to facilitate it to the peptidoglycan layer. This study aimed to use EN4 in reducing Salmonella in chilled and thawed raw chicken meat. However, the use of EDTA is limited to some types of foods. An alternative to EDTA was explored. Sodium bicarbonate was identified as an effective alternative to EDTA. The combination of EN4 with 0.1 % NaHCO3, pH 7.4 showed a wide lytic spectrum against Salmonella spp. The combination showed efficiency in reduction of Salmonella Enteritidis and Typhimurium in raw chicken meat during storage at 4 °C for 48 h, with the maximum reduction of 1.0-1.3log CFU/g. The efficiency of the combination against Salmonella was evaluated in frozen chicken meat during proper and improper defrosting. A significant reduction of Salmonella was observed in EN4-treated meat compared to the untreated control through 48 and 4 h of defrosting at 4 and 30 °C, respectively, with the greatest reduction of 1.2-1.6 log CFU/g. The results indicated that EN4 in combination with NaHCO3 has a potential use for controlling growth of Salmonella in chilled and thawed chicken meat.


Subject(s)
Chickens , Sodium Bicarbonate , Animals , Chickens/microbiology , Sodium Bicarbonate/pharmacology , Peptidoglycan , Edetic Acid , Salmonella enteritidis , Meat/microbiology , Food Microbiology
2.
Food Microbiol ; 104: 103988, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35287811

ABSTRACT

Histamine is a biogenic amine significantly formed in fish sauce leading to a major concern in consumers. This study aimed to identify a halophilic bacterium for histamine degradation in fish sauce, and understand its genomic insight to enhance histamine degradation activity. We discovered the novel halophilic bacterium, Bacillus piscicola FBU1786, degrading histamine and other biogenic amines. Its histamine breakdown was growth-associated in a wide range of NaCl concentrations, pH, and temperature from 4% to 18%, 6.0 to 9.0, and 30 to 45 °C, respectively. Genome sequencing revealed the presence of Cu2+-binding oxidase-encoding genes and their heterologous expression with Cu2+ supplementation triggered histamine degradation in E. coli. The degree of histamine breakdown in B. piscicola FBU1786 could be enhanced by Cu2+ addition. Histamine degradation of the culture was evaluated in raw fish sauce mixtures to partially mimic the condition during fish sauce fermentation. Histamine degradation was suppressed to the extent of raw fish sauce, but could be restored by Cu2+ supplementation. Together, this study disclosed B. piscicola FBU1786 with the potent histamine degradation activity, identified Cu2+-binding oxidases responsible for histamine breakdown, and enhanced histamine degradation of the culture using Cu2+ supplementation.


Subject(s)
Escherichia coli , Histamine , Animals , Escherichia coli/genetics , Fishes , Food , Genomics
3.
Probiotics Antimicrob Proteins ; 10(2): 218-227, 2018 06.
Article in English | MEDLINE | ID: mdl-28712023

ABSTRACT

Three hundred and sixty presumptive lactic acid bacteria (LAB) isolated from pregnant sows, newborn, suckling, and weaned piglets were preliminarily screened for anti-Salmonella activity. Fifty-eight isolates consisting of Lactobacillus reuteri (n = 32), Lactobacillus salivarius (n = 10), Lactobacillus mucosae (n = 8), Lactobacillus johnsonii (n = 5), and Lactobacillus crispatus (n = 3) were selected and further characterized for probiotic properties including production of antimicrobial substances, acid and bile tolerance, and cell adherence to Caco-2 cells. Eight isolates including Lact. johnsonii LJ202 and Lact. reuteri LR108 were identified as potential probiotics. LJ202 was selected for further use in co-culture studies of two-bacterial and multiple-bacterial species to examine its inhibitory activity against Salmonella enterica serovar Enteritidis DMST7106 (SE7106). Co-culture of LJ202 and SE7106 showed that LJ202 could completely inhibit the growth of SE7106 in 10 h of co-culture. In co-culture of multiple-bacterial species, culturable fecal bacteria from pig feces were used as representative of multiple-bacterial species. The study was performed to examine whether interactions among multiple-bacterial species would influence antagonistic activity of LJ202 against SE7106 and fecal coliform bacteria. Co-culture of SE7106 with different combinations of fecal bacteria and probiotic (LJ202 and LR108) or non-probiotic (Lact. mucosae LM303) strains revealed that the growth of SE7106 was completely inhibited either in the presence or in the absence of probiotic strains. Intriguingly, LJ202 exhibited notable inhibitory activity against fecal coliform bacteria while LR108 did not. Taken together, the results of co-culture studies suggested that LJ202 is a good probiotic candidate for further study its inhibitory effects against pathogen infections in pigs.


Subject(s)
Antibiosis , Feces/microbiology , Lactobacillus/isolation & purification , Probiotics/isolation & purification , Salmonella enteritidis/growth & development , Swine/microbiology , Animals , Bacterial Adhesion , Caco-2 Cells , Humans , Lactobacillus/classification , Lactobacillus/genetics , Lactobacillus/physiology , Probiotics/chemistry , Probiotics/classification , Salmonella enteritidis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...