Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Pharmacol Toxicol Methods ; 123: 107278, 2023.
Article in English | MEDLINE | ID: mdl-37268094

ABSTRACT

Understanding translation from preclinical observations to clinical findings is important for evaluating the efficacy and safety of novel compounds. Of relevance to cardiac safety is profiling drug effects on cardiomyocyte (CM) sarcomere shortening and intracellular Ca2+ dynamics. Although CM from different animal species have been used to assess such effects, primary human CM isolated from human organ donor heart represent an ideal non-animal alternative approach. We performed a study to evaluate primary human CM and have them compared to freshly isolated dog cardiomyocytes for their basic function and responses to positive inotropes with well-known mechanisms. Our data showed that simultaneous assessment of sarcomere shortening and Ca2+-transient can be performed with both myocytes using the IonOptix system. Amplitude of sarcomere shortening and Ca2+-transient (CaT) were significantly higher in dog compared to human CM in the basic condition (absence of treatment), while longer duration of sarcomere shortening and CaT were observed in human cells. We observed that human and dog CMs have similar pharmacological responses to five inotropes with different mechanisms, including dobutamine and isoproterenol (ß-adrenergic stimulation), milrinone (PDE3 inhibition), pimobendan and levosimendan (increase of Ca2+sensitization as well as PDE3 inhibition). In conclusion, our study suggests that myocytes obtained from both human donor hearts and dog hearts can be used to simultaneously assess drug-induced effects on sarcomere shortening and CaT using the IonOptix platform.


Subject(s)
Heart Transplantation , Myocytes, Cardiac , Humans , Dogs , Animals , Calcium , Sarcomeres/physiology , Myocardial Contraction , Tissue Donors
2.
Cell Rep Methods ; 3(4): 100456, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37159667

ABSTRACT

Decreased left ventricle (LV) function caused by genetic mutations or injury often leads to debilitating and fatal cardiovascular disease. LV cardiomyocytes are, therefore, a potentially valuable therapeutical target. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are neither homogeneous nor functionally mature, which reduces their utility. Here, we exploit cardiac development knowledge to instruct differentiation of hPSCs specifically toward LV cardiomyocytes. Correct mesoderm patterning and retinoic acid pathway blocking are essential to generate near-homogenous LV-specific hPSC-CMs (hPSC-LV-CMs). These cells transit via first heart field progenitors and display typical ventricular action potentials. Importantly, hPSC-LV-CMs exhibit increased metabolism, reduced proliferation, and improved cytoarchitecture and functional maturity compared with age-matched cardiomyocytes generated using the standard WNT-ON/WNT-OFF protocol. Similarly, engineered heart tissues made from hPSC-LV-CMs are better organized, produce higher force, and beat more slowly but can be paced to physiological levels. Together, we show that functionally matured hPSC-LV-CMs can be obtained rapidly without exposure to current maturation regimes.


Subject(s)
Cardiovascular Diseases , Pluripotent Stem Cells , Humans , Myocytes, Cardiac , Heart Ventricles , Action Potentials
3.
Commun Biol ; 5(1): 934, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36085302

ABSTRACT

There is need for a reliable in vitro system that can accurately replicate the cardiac physiological environment for drug testing. The limited availability of human heart tissue culture systems has led to inaccurate interpretations of cardiac-related drug effects. Here, we developed a cardiac tissue culture model (CTCM) that can electro-mechanically stimulate heart slices with physiological stretches in systole and diastole during the cardiac cycle. After 12 days in culture, this approach partially improved the viability of heart slices but did not completely maintain their structural integrity. Therefore, following small molecule screening, we found that the incorporation of 100 nM tri-iodothyronine (T3) and 1 µM dexamethasone (Dex) into our culture media preserved the microscopic structure of the slices for 12 days. When combined with T3/Dex treatment, the CTCM system maintained the transcriptional profile, viability, metabolic activity, and structural integrity for 12 days at the same levels as the fresh heart tissue. Furthermore, overstretching the cardiac tissue induced cardiac hypertrophic signaling in culture, which provides a proof of concept for the ability of the CTCM to emulate cardiac stretch-induced hypertrophic conditions. In conclusion, CTCM can emulate cardiac physiology and pathophysiology in culture for an extended time, thereby enabling reliable drug screening.


Subject(s)
Biomimetics , Heart , Cardiomegaly , Culture Media , Humans , Systole
4.
J Vis Exp ; (186)2022 08 09.
Article in English | MEDLINE | ID: mdl-36036601

ABSTRACT

The evaluation of changes in heart contractility is essential during preclinical development for new cardiac- and non-cardiac-targeted compounds. This paper describes a protocol for assessing changes in contractility in adult human primary ventricular cardiomyocytes utilizing the MyoBLAZER, a non-invasive optical method that preserves the normal physiology and pharmacology of the cells. This optical recording method continuously measures contractility transients from multiple cells in parallel, providing both medium-throughput and valuable information for each individual cell in the field of view, enabling the real-time tracking of drug effects. The cardiomyocyte contractions are induced by paced electrical field stimulation, and the acquired bright field images are fed to an image-processing software that measures the sarcomere shortening across multiple cardiomyocytes. This method rapidly generates different endpoints related to the kinetics of contraction and relaxation phases, and the resulting data can then be interpreted in relation to different concentrations of a test article. This method is also employed in the late stages of preclinical development to perform follow-up mechanistic studies to support ongoing clinical studies. Thus, the adult human primary cardiomyocyte-based model combined with the optical system for continuous contractility monitoring has the potential to contribute to a new era of in vitro cardiac data translatability in preclinical medical therapy development.


Subject(s)
Myocardial Contraction , Myocytes, Cardiac , Adult , Humans , Myocytes, Cardiac/physiology , Sarcomeres
5.
Cells ; 10(12)2021 11 30.
Article in English | MEDLINE | ID: mdl-34943878

ABSTRACT

Subtype-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are promising tools, e.g., to assess the potential of drugs to cause chronotropic effects (nodal hiPSC-CMs), atrial fibrillation (atrial hiPSC-CMs), or ventricular arrhythmias (ventricular hiPSC-CMs). We used single-cell patch-clamp reverse transcriptase-quantitative polymerase chain reaction to clarify the composition of the iCell cardiomyocyte population (Fujifilm Cellular Dynamics, Madison, WI, USA) and to compare it with atrial and ventricular Pluricytes (Ncardia, Charleroi, Belgium) and primary human atrial and ventricular cardiomyocytes. The comparison of beating and non-beating iCell cardiomyocytes did not support the presence of true nodal, atrial, and ventricular cells in this hiPSC-CM population. The comparison of atrial and ventricular Pluricytes with primary human cardiomyocytes showed trends, indicating the potential to derive more subtype-specific hiPSC-CM models using appropriate differentiation protocols. Nevertheless, the single-cell phenotypes of the majority of the hiPSC-CMs showed a combination of attributes which may be interpreted as a mixture of traits of adult cardiomyocyte subtypes: (i) nodal: spontaneous action potentials and high HCN4 expression and (ii) non-nodal: prominent INa-driven fast inward current and high expression of SCN5A. This may hamper the interpretation of the drug effects on parameters depending on a combination of ionic currents, such as beat rate. However, the proven expression of specific ion channels supports the evaluation of the drug effects on ionic currents in a more realistic cardiomyocyte environment than in recombinant non-cardiomyocyte systems.


Subject(s)
Electrophysiological Phenomena , Induced Pluripotent Stem Cells/metabolism , Ion Channels/metabolism , Myocytes, Cardiac/metabolism , Cells, Cultured , Gene Expression Regulation , Humans , Ion Channel Gating , Myocytes, Cardiac/cytology , Single-Cell Analysis
6.
Sci Rep ; 11(1): 12014, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103608

ABSTRACT

Late sodium current (late INa) inhibition has been proposed to suppress the incidence of arrhythmias generated by pathological states or induced by drugs. However, the role of late INa in the human heart is still poorly understood. We therefore investigated the role of this conductance in arrhythmias using adult primary cardiomyocytes and tissues from donor hearts. Potentiation of late INa with ATX-II (anemonia sulcata toxin II) and E-4031 (selective blocker of the hERG channel) slowed the kinetics of action potential repolarization, impaired Ca2+ homeostasis, increased contractility, and increased the manifestation of arrhythmia markers. These effects could be reversed by late INa inhibitors, ranolazine and GS-967. We also report that atrial tissues from donor hearts affected by atrial fibrillation exhibit arrhythmia markers in the absence of drug treatment and inhibition of late INa with GS-967 leads to a significant reduction in arrhythmic behaviour. These findings reveal a critical role for the late INa in cardiac arrhythmias and suggest that inhibition of this conductance could provide an effective therapeutic strategy. Finally, this study highlights the utility of human ex-vivo heart models for advancing cardiac translational sciences.


Subject(s)
Atrial Fibrillation/metabolism , ERG1 Potassium Channel/metabolism , Membrane Potentials , Models, Cardiovascular , Myocytes, Cardiac/metabolism , Adult , Calcium/metabolism , Cnidarian Venoms/pharmacology , ERG1 Potassium Channel/antagonists & inhibitors , Heart Atria/metabolism , Humans , Myocytes, Cardiac/pathology , Piperidines/pharmacology , Pyridines/pharmacology , Ranolazine/pharmacology , Sodium , Triazoles/pharmacology
7.
Toxicol Sci ; 180(2): 356-368, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33483756

ABSTRACT

Substantial efforts have been recently committed to develop coronavirus disease-2019 (COVID-19) medications, and Hydroxychloroquine alone or in combination with Azithromycin has been promoted as a repurposed treatment. Although these drugs may increase cardiac toxicity risk, cardiomyocyte mechanisms underlying this risk remain poorly understood in humans. Therefore, we evaluated the proarrhythmia risk and inotropic effects of these drugs in the cardiomyocyte contractility-based model of the human heart. We found Hydroxychloroquine to have a low proarrhythmia risk, whereas Chloroquine and Azithromycin were associated with high risk. Hydroxychloroquine proarrhythmia risk changed to high with low level of K+, whereas high level of Mg2+ protected against proarrhythmic effect of high Hydroxychloroquine concentrations. Moreover, therapeutic concentration of Hydroxychloroquine caused no enhancement of elevated temperature-induced proarrhythmia. Polytherapy of Hydroxychloroquine plus Azithromycin and sequential application of these drugs were also found to influence proarrhythmia risk categorization. Hydroxychloroquine proarrhythmia risk changed to high when combined with Azithromycin at therapeutic concentration. However, Hydroxychloroquine at therapeutic concentration impacted the cardiac safety profile of Azithromycin and its proarrhythmia risk only at concentrations above therapeutic level. We also report that Hydroxychloroquine and Chloroquine, but not Azithromycin, decreased contractility while exhibiting multi-ion channel block features, and Hydroxychloroquine's contractility effect was abolished by Azithromycin. Thus, this study has the potential to inform clinical studies evaluating repurposed therapies, including those in the COVID-19 context. Additionally, it demonstrates the translational value of the human cardiomyocyte contractility-based model as a key early discovery path to inform decisions on novel therapies for COVID-19, malaria, and inflammatory diseases.


Subject(s)
Antiviral Agents/adverse effects , COVID-19 Drug Treatment , Cardiotoxicity , Chloroquine/adverse effects , Hydroxychloroquine/adverse effects , Myocytes, Cardiac/drug effects , Adult , Aged , Aged, 80 and over , Antiviral Agents/administration & dosage , Azithromycin/administration & dosage , Azithromycin/adverse effects , Chloroquine/administration & dosage , Female , Humans , Hydroxychloroquine/administration & dosage , Male , Middle Aged , Risk Assessment , SARS-CoV-2 , United States
8.
Br J Pharmacol ; 177(24): 5534-5554, 2020 12.
Article in English | MEDLINE | ID: mdl-32959887

ABSTRACT

BACKGROUND AND PURPOSE: The lack of selective sodium-calcium exchanger (NCX) inhibitors has hampered the exploration of physiological and pathophysiological roles of cardiac NCX 1.1. We aimed to discover more potent and selective drug like NCX 1.1 inhibitor. EXPERIMENTAL APPROACH: A flavan series-based pharmacophore model was constructed. Virtual screening helped us identify a novel scaffold for NCX inhibition. A distinctively different NCX 1.1 inhibitor, ORM-11372, was discovered after lead optimization. Its potency against human and rat NCX 1.1 and selectivity against other ion channels was assessed. The cardiovascular effects of ORM-11372 were studied in normal and infarcted rats and rabbits. Human cardiac safety was studied ex vivo using human ventricular trabeculae. KEY RESULTS: ORM-11372 inhibited human NCX 1.1 reverse and forward currents; IC50 values were 5 and 6 nM respectively. ORM-11372 inhibited human cardiac sodium 1.5 (INa ) and hERG KV 11.1 currents (IhERG ) in a concentration-dependent manner; IC50 values were 23.2 and 10.0 µM. ORM-11372 caused no changes in action potential duration; short-term variability and triangulation were observed for concentrations of up to 10 µM. ORM-11372 induced positive inotropic effects of 18 ± 6% and 35 ± 8% in anaesthetized rats with myocardial infarctions and in healthy rabbits respectively; no other haemodynamic effects were observed, except improved relaxation at the lowest dose. CONCLUSION AND IMPLICATIONS: ORM-11372, a unique, novel, and potent inhibitor of human and rat NCX 1.1, is a positive inotropic compound. NCX inhibition can induce clinically relevant improvements in left ventricular contractions without affecting relaxation, heart rate, or BP, without pro-arrhythmic risk.


Subject(s)
Myocytes, Cardiac , Sodium-Calcium Exchanger , Action Potentials , Animals , Calcium/metabolism , Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Rabbits , Rats , Sodium/metabolism
9.
Sci Rep ; 10(1): 7692, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32376974

ABSTRACT

Effects of non-cardiac drugs on cardiac contractility can lead to serious adverse events. Furthermore, programs aimed at treating heart failure have had limited success and this therapeutic area remains a major unmet medical need. The challenges in assessing drug effect on cardiac contractility point to the fundamental translational value of the current preclinical models. Therefore, we sought to develop an adult human primary cardiomyocyte contractility model that has the potential to provide a predictive preclinical approach for simultaneously predicting drug-induced inotropic effect (sarcomere shortening) and generating multi-parameter data to profile different mechanisms of action based on cluster analysis of a set of 12 contractility parameters. We report that 17 positive and 9 negative inotropes covering diverse mechanisms of action exerted concentration-dependent increases and decreases in sarcomere shortening, respectively. Interestingly, the multiparametric readout allowed for the differentiation of inotropes operating via distinct mechanisms. Hierarchical clustering of contractility transient parameters, coupled with principal component analysis, enabled the classification of subsets of both positive as well as negative inotropes, in a mechanism-related mode. Thus, human cardiomyocyte contractility model could accurately facilitate informed mechanistic-based decision making, risk management and discovery of molecules with the most desirable pharmacological profile for the correction of heart failure.


Subject(s)
Cardiotonic Agents/pharmacology , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Sarcomeres/drug effects , Adult , Cell Differentiation/drug effects , Cluster Analysis , Female , Humans , Male , Middle Aged , Young Adult
10.
J Mol Cell Cardiol ; 142: 24-38, 2020 05.
Article in English | MEDLINE | ID: mdl-32251669

ABSTRACT

Cardiac Purkinje cells (PCs) are implicated in lethal arrhythmias caused by cardiac diseases, mutations, and drug action. However, the pro-arrhythmic mechanisms in PCs are not entirely understood, particularly in humans, as most investigations are conducted in animals. The aims of this study are to present a novel human PCs electrophysiology biophysically-detailed computational model, and to disentangle ionic mechanisms of human Purkinje-related electrophysiology, pacemaker activity and arrhythmogenicity. The new Trovato2020 model incorporates detailed Purkinje-specific ionic currents and Ca2+ handling, and was developed, calibrated and validated using human experimental data acquired at multiple frequencies, both in control conditions and following drug application. Multiscale investigations were performed in a Purkinje cell, in fibre and using an experimentally-calibrated population of PCs to evaluate biological variability. Simulations demonstrate the human Purkinje Trovato2020 model is the first one to yield: (i) all key AP features consistent with human Purkinje recordings; (ii) Automaticity with funny current up-regulation (iii) EADs at slow pacing and with 85% hERG block; (iv) DADs following fast pacing; (v) conduction velocity of 160 cm/s in a Purkinje fibre, as reported in human. The human in silico PCs population highlights that: (1) EADs are caused by ICaL reactivation in PCs with large inward currents; (2) DADs and triggered APs occur in PCs experiencing Ca2+ accumulation, at fast pacing, caused by large L-type calcium current and small Na+/Ca2+ exchanger. The novel human Purkinje model unlocks further investigations into the role of cardiac Purkinje in ventricular arrhythmias through computer modeling and multiscale simulations.


Subject(s)
Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Biomarkers , Disease Susceptibility , Models, Biological , Purkinje Fibers/metabolism , Purkinje Fibers/physiopathology , Action Potentials , Arrhythmias, Cardiac/metabolism , Calcium/metabolism , Calcium Signaling , Electrophysiological Phenomena , Humans , Reproducibility of Results , Sodium/metabolism
11.
Curr Pharm Biotechnol ; 21(9): 787-806, 2020.
Article in English | MEDLINE | ID: mdl-31820682

ABSTRACT

In preclinical drug development, accurate prediction of drug effects on the human heart is critically important, whether in the context of cardiovascular safety or for the purpose of modulating cardiac function to treat heart disease. Current strategies have significant limitations, whereby, cardiotoxic drugs can escape detection or potential life-saving therapies are abandoned due to false positive toxicity signals. Thus, new and more reliable translational approaches are urgently needed to help accelerate the rate of new therapy development. Renewed efforts in the recovery of human donor hearts for research and in cardiomyocyte isolation methods, are providing new opportunities for preclinical studies in adult primary cardiomyocytes. These cells exhibit the native physiological and pharmacological properties, overcoming the limitations presented by artificial cellular models, animal models and have great potential for providing an excellent tool for preclinical drug testing. Adult human primary cardiomyocytes have already shown utility in assessing drug-induced cardiotoxicity risk and helping in the identification of new treatments for cardiac diseases, such as heart failure and atrial fibrillation. Finally, strategies with actionable decision-making trees that rely on data derived from adult human primary cardiomyocytes will provide the holistic insights necessary to accurately predict human heart effects of drugs.


Subject(s)
Drug Discovery/methods , Heart/drug effects , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/drug effects , Translational Research, Biomedical , Animals , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Cardiotoxicity , Drug Evaluation, Preclinical , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/physiology , Primary Cell Culture , Tissue Donors
12.
Circ Res ; 125(9): 855-867, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31600125

ABSTRACT

Given that cardiovascular safety concerns remain the leading cause of drug attrition at the preclinical drug development stage, the National Center for Toxicological Research of the US Food and Drug Administration hosted a workshop to discuss current gaps and challenges in translating preclinical cardiovascular safety data to humans. This white paper summarizes the topics presented by speakers from academia, industry, and government intended to address the theme of improving cardiotoxicity assessment in drug development. The main conclusion is that to reduce cardiovascular safety liabilities of new therapeutic agents, there is an urgent need to integrate human-relevant platforms/approaches into drug development. Potential regulatory applications of human-derived cardiomyocytes and future directions in employing human-relevant platforms to fill the gaps and overcome barriers and challenges in preclinical cardiovascular safety assessment were discussed. This paper is intended to serve as an initial step in a public-private collaborative development program for human-relevant cardiotoxicity tools, particularly for cardiotoxicities characterized by contractile dysfunction or structural injury.


Subject(s)
Cardiotoxicity/epidemiology , Cardiotoxins/toxicity , Education/standards , Research Report/standards , United States Food and Drug Administration/standards , Animals , Cardiotoxicity/prevention & control , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Drug Evaluation, Preclinical/trends , Education/trends , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Research Report/trends , United States/epidemiology , United States Food and Drug Administration/trends
13.
J Pharmacol Toxicol Methods ; 98: 106582, 2019.
Article in English | MEDLINE | ID: mdl-31077805

ABSTRACT

The Safety Pharmacology Society (SPS) held a West Coast Regional Meeting in Foster City, CA on November 14, 2018 at the Gilead Sciences Inc. site. The meeting was attended by scientists from the pharmaceutical and biotechnology industry, contract research organizations (CROs) and academia. A variety of scientific topics were presented by speakers, covering a broad variety of topics in the fields of safety risk assessment; from pro-arrhythmia and contractility risk evaluation, to models of heart failure and seizure in-a-dish; and discovery sciences; from stem cells and precision medicine, to models of inherited cardiomyopathy and precision cut tissue slices. The present review summarizes the highlights of the presentations and provides an overview of the high level of innovation currently underlying many frontiers in safety pharmacology.


Subject(s)
Drug Industry/methods , Drug-Related Side Effects and Adverse Reactions/prevention & control , Pharmacology/methods , Animals , Drug Evaluation, Preclinical/methods , Humans , Risk Assessment , Societies, Pharmaceutical
14.
Front Physiol ; 8: 597, 2017.
Article in English | MEDLINE | ID: mdl-28868038

ABSTRACT

Background:In silico modeling could soon become a mainstream method of pro-arrhythmic risk assessment in drug development. However, a lack of human-specific data and appropriate modeling techniques has previously prevented quantitative comparison of drug effects between in silico models and recordings from human cardiac preparations. Here, we directly compare changes in repolarization biomarkers caused by dofetilide, dl-sotalol, quinidine, and verapamil, between in silico populations of human ventricular cell models and ex vivo human ventricular trabeculae. Methods and Results:Ex vivo recordings from human ventricular trabeculae in control conditions were used to develop populations of in silico human ventricular cell models that integrated intra- and inter-individual variability in action potential (AP) biomarker values. Models were based on the O'Hara-Rudy ventricular cardiomyocyte model, but integrated experimental AP variability through variation in underlying ionic conductances. Changes to AP duration, triangulation and early after-depolarization occurrence from application of the four drugs at multiple concentrations and pacing frequencies were compared between simulations and experiments. To assess the impact of variability in IC50 measurements, and the effects of including state-dependent drug binding dynamics, each drug simulation was repeated with two different IC50 datasets, and with both the original O'Hara-Rudy hERG model and a recently published state-dependent model of hERG and hERG block. For the selective hERG blockers dofetilide and sotalol, simulation predictions of AP prolongation and repolarization abnormality occurrence showed overall good agreement with experiments. However, for multichannel blockers quinidine and verapamil, simulations were not in agreement with experiments across all IC50 datasets and IKr block models tested. Quinidine simulations resulted in overprolonged APs and high incidence of repolarization abnormalities, which were not observed in experiments. Verapamil simulations showed substantial AP prolongation while experiments showed mild AP shortening. Conclusions: Results for dofetilide and sotalol show good agreement between experiments and simulations for selective compounds, however lack of agreement from simulations of quinidine and verapamil suggest further work is needed to understand the more complex electrophysiological effects of these multichannel blocking drugs.

15.
J Pharmacol Toxicol Methods ; 87: 99-107, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28192183

ABSTRACT

INTRODUCTION: The Comprehensive in vitro Proarrhythmic Assay (CiPA) aims to update current cardiac safety testing to better evaluate arrhythmic risk. A central theme of CiPA is the use of in silico approaches to risk prediction incorporating models of drug binding to hERG. To parameterize these models, accurate in vitro measurement of potency and kinetics of block is required. The Ion Channel Working Group was tasked with: i) selecting a protocol that could measure kinetics of block and was easily implementable on automated platforms for future rollout in industry and ii) acquiring a reference dataset using the standardized protocol. METHODS: Data were acquired using a 'step depolarisation' protocol using manual patch-clamp at ambient temperature. RESULTS: Potency, kinetics and trapping characteristics of hERG block for the CiPA training panel of twelve drugs were measured. Timecourse of block and trapping characteristics could be reliably measured if the time constant for onset of block was between ~500ms and ~15s. Seven drugs, however had time courses of block faster than this cut-off. DISCUSSION: Here we describe the implementation of the standardized protocol for measurement of kinetics and potency of hERG block for CiPA. The results highlight the challenges in identifying a single protocol to measure hERG block over a range of kinetics. The dataset from this study is being used by the In Silico Working Group to develop models of drug binding for risk prediction and is freely available as a 'gold standard' ambient temperature dataset to evaluate variability across high throughput platforms.


Subject(s)
Anti-Arrhythmia Agents/pharmacokinetics , Arrhythmias, Cardiac/physiopathology , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/physiology , Potassium Channel Blockers/pharmacokinetics , Animals , Anti-Arrhythmia Agents/adverse effects , Arrhythmias, Cardiac/chemically induced , CHO Cells , Cricetinae , Cricetulus , Kinetics , Potassium Channel Blockers/adverse effects
16.
Front Physiol ; 8: 1109, 2017.
Article in English | MEDLINE | ID: mdl-29354071

ABSTRACT

To assess drug-induced pro-arrhythmic risk, especially Torsades de Pointe (TdP), new models have been proposed, such as in-silico modeling of ventricular action potential (AP) and stem cell-derived cardiomyocytes (SC-CMs). Previously we evaluated the electrophysiological profile of 15 reference drugs in hESC-CMs and hiPSC-CMs for their effects on intracellular AP and extracellular field potential, respectively. Our findings indicated that SC-CMs exhibited immature phenotype and had the propensity to generate false positives in predicting TdP risk. To expand our knowledge with mature human cardiac tissues for drug-induced pro-arrhythmic risk assessment, human ventricular trabeculae (hVT) from ethically consented organ donors were used to evaluate the effects of the same 15 drugs (8 torsadogenic, 5 non-torsadogenic, and 2 discovery molecules) on AP parameters at 1 and 2 Hz. Each drug was tested blindly with 4 concentrations in duplicate trabeculae from 2 hearts. To identify the pro-arrhythmic risk of each drug, a pro-arrhythmic score was calculated as the weighted sum of percent drug-induced changes compared to baseline in various AP parameters, including AP duration and recognized pro-arrhythmia predictors such as triangulation, beat-to-beat variability and incidence of early-afterdepolarizations, at each concentration. In addition, to understand the translation of this preclinical hVT AP-based model to clinical studies, a ratio that relates each testing concentration to the human therapeutic unbound Cmax (Cmax) was calculated. At a ratio of 10, for the 8 torsadogenic drugs, 7 were correctly identified by the pro-arrhythmic score; 1 was mislabeled. For the 5 non-torsadogenic drugs, 4 were correctly identified as safe; 1 was mislabeled. Calculation of sensitivity, specificity, positive predictive value, and negative predictive value indicated excellent performance. For example, at a ratio of 10, scores for sensitivity, specificity, positive predictive value and negative predictive values were 0.88, 0.8, 0.88 and 0.8, respectively. Thus, the hVT AP-based model combined with the integrated analysis of pro-arrhythmic score can differentiate between torsadogenic and non-torsadogenic drugs, and has a greater predictive performance when compared to human SC-CM models.

17.
Front Physiol ; 8: 1073, 2017.
Article in English | MEDLINE | ID: mdl-29311989

ABSTRACT

Cardiac safety remains the leading cause of drug development discontinuation. We developed a human cardiomyocyte-based model that has the potential to provide a predictive preclinical approach for simultaneously predicting drug-induced inotropic and pro-arrhythmia risk. Methods: Adult human primary cardiomyocytes from ethically consented organ donors were used to measure contractility transients. We used measures of changes in contractility parameters as markers to infer both drug-induced inotropic effect (sarcomere shortening) and pro-arrhythmia (aftercontraction, AC); contractility escape (CE); time to 90% relaxation (TR90). We addressed the clinical relevance of this approach by evaluating the effects of 23 torsadogenic and 10 non-torsadogenic drugs. Each drug was tested separately at four multiples of the free effective therapeutic plasma concentration (fETPC). Results: Human cardiomyocyte-based model differentiated between torsadogenic and non-torsadogenic drugs. For example, dofetilide, a torsadogenic drug, caused ACs and increased TR90 starting at 10-fold the fETPC, while CE events were observed at the highest multiple of fETPC (100-fold). Verapamil, a non-torsadogenic drug, did not change TR90 and induced no AC or CE up to the highest multiple of fETPCs tested in this study (222-fold). When drug pro-arrhythmic activity was evaluated at 10-fold of the fETPC, AC parameter had excellent assay sensitivity and specificity values of 96 and 100%, respectively. This high predictivity supports the translational safety potential of this preparation and of the selected marker. The data demonstrate that human cardiomyocytes could also identify drugs associated with inotropic effects. hERG channel blockers, like dofetilide, had no effects on sarcomere shortening, while multi-ion channel blockers, like verapamil, inhibited sarcomere shortening. Conclusions: Isolated adult human primary cardiomyocytes can simultaneously predict risks associated with inotropic activity and pro-arrhythmia and may enable the generation of reliable and predictive data for assessing human cardiotoxicity at an early stage in drug discovery.

18.
Article in English | MEDLINE | ID: mdl-27622857

ABSTRACT

Cardiovascular toxicity is a prominent reason for failures in drug development, resulting in the demand for assays that can predict this liability in early drug discovery. We investigated whether iCell® cardiomyocytes have utility as an early QT/TdP screen. Thirty clinical drugs with known QT/TdP outcomes were evaluated blind using label-free microelectrode array (parameters measured were beating period (BP), field potential duration (FPD), fast Na+ amplitude and slope) and live cell, fast kinetic fluorescent Ca2+ transient FLIPR® Tetra (parameters measured were peak count, width, amplitude) systems. Many FPD-altering drugs also altered BP. Correction for BP, using a Log-Log (LL) model, was required to appropriately interpret direct drug effects on FPD. In comparison with human QT effects and when drug activity was to be predicted at top test concentration (TTC), LL-corrected FPD and peak count had poor assay sensitivity and specificity values: 13%/64% and 65%/11%, respectively. If effective free therapeutic plasma concentration (EFTPC) was used instead of TTC, the values were 0%/100% and 6%/100%, respectively. When compared to LL-corrected FPD and peak count, predictive values of uncorrected FPD, BP, width and amplitude were not much different. If pro-arrhythmic risk was to be predicted using Ca2+ transient data, the values were 67%/100% and 78%/53% at EFTPC and TTC, respectively. Thus, iCell® cardiomyocytes have limited value as an integrated QT/TdP assay, highlighting the urgent need for improved experimental alternatives that may offer an accurate integrated cardiomyocyte safety model for supporting the development of new drugs without QT/TdP effects.


Subject(s)
Action Potentials/drug effects , Calcium Channels/metabolism , Drug-Related Side Effects and Adverse Reactions , Induced Pluripotent Stem Cells/drug effects , Long QT Syndrome/chemically induced , Myocytes, Cardiac/drug effects , Cardiotoxicity , Cell Culture Techniques , Cells, Cultured , Culture Media/chemistry , Drug Evaluation, Preclinical , Humans , Induced Pluripotent Stem Cells/metabolism , Long QT Syndrome/metabolism , Long QT Syndrome/physiopathology , Microelectrodes , Myocytes, Cardiac/metabolism , Pharmaceutical Preparations/administration & dosage
19.
J Pharmacol Toxicol Methods ; 81: 183-95, 2016.
Article in English | MEDLINE | ID: mdl-27235787

ABSTRACT

While current S7B/E14 guidelines have succeeded in protecting patients from QT-prolonging drugs, the absence of a predictive paradigm identifying pro-arrhythmic risks has limited the development of valuable drug programs. We investigated if a human ex-vivo action potential (AP)-based model could provide a more predictive approach for assessing pro-arrhythmic risk in man. Human ventricular trabeculae from ethically consented organ donors were used to evaluate the effects of dofetilide, d,l-sotalol, quinidine, paracetamol and verapamil on AP duration (APD) and recognized pro-arrhythmia predictors (short-term variability of APD at 90% repolarization (STV(APD90)), triangulation (ADP90-APD30) and incidence of early afterdepolarizations at 1 and 2Hz to quantitatively identify the pro-arrhythmic risk. Each drug was blinded and tested separately with 3 concentrations in triplicate trabeculae from 5 hearts, with one vehicle time control per heart. Electrophysiological stability of the model was not affected by sequential applications of vehicle (0.1% dimethyl sulfoxide). Paracetamol and verapamil did not significantly alter anyone of the AP parameters and were classified as devoid of pro-arrhythmic risk. Dofetilide, d,l-sotalol and quinidine exhibited an increase in the manifestation of pro-arrhythmia markers. The model provided quantitative and actionable activity flags and the relatively low total variability in tissue response allowed for the identification of pro-arrhythmic signals. Power analysis indicated that a total of 6 trabeculae derived from 2 hearts are sufficient to identify drug-induced pro-arrhythmia. Thus, the human ex-vivo AP-based model provides an integrative translational assay assisting in shaping clinical development plans that could be used in conjunction with the new CiPA-proposed approach.


Subject(s)
Action Potentials/drug effects , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Adult , Cardiovascular Agents/pharmacology , Data Interpretation, Statistical , Drug Discovery , Electrocardiography/drug effects , Electrophysiological Phenomena/drug effects , Female , Heart/drug effects , Humans , In Vitro Techniques , Male , Middle Aged , Models, Biological , Predictive Value of Tests , Risk Assessment , Signal-To-Noise Ratio , Young Adult
20.
J Physiol ; 594(23): 6893-6908, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27060987

ABSTRACT

Risk stratification in the context of sudden cardiac death has been acknowledged as one of the major challenges facing cardiology for the past four decades. In recent years, the advent of high performance computing has facilitated organ-level simulation of the heart, meaning we can now examine the causes, mechanisms and impact of cardiac dysfunction in silico. As a result, computational cardiology, largely driven by the Physiome project, now stands at the threshold of clinical utility in regards to risk stratification and treatment of patients at risk of sudden cardiac death. In this white paper, we outline a roadmap of what needs to be done to make this translational step, using the relatively well-developed case of acquired or drug-induced long QT syndrome as an exemplar case.


Subject(s)
Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/complications , Death, Sudden, Cardiac/etiology , Drug-Related Side Effects and Adverse Reactions , Models, Cardiovascular , Animals , Cardiology/methods , Computer Simulation , Heart/physiopathology , Humans , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...