Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-20671313

ABSTRACT

We participated (as Team 9) in the Article Classification Task of the Biocreative II.5 Challenge: binary classification of full-text documents relevant for protein-protein interaction. We used two distinct classifiers for the online and offline challenges: 1) the lightweight Variable Trigonometric Threshold (VTT) linear classifier we successfully introduced in BioCreative 2 for binary classification of abstracts and 2) a novel Naive Bayes classifier using features from the citation network of the relevant literature. We supplemented the supplied training data with full-text documents from the MIPS database. The lightweight VTT classifier was very competitive in this new full-text scenario: it was a top-performing submission in this task, taking into account the rank product of the Area Under the interpolated precision and recall Curve, Accuracy, Balanced F-Score, and Matthew's Correlation Coefficient performance measures. The novel citation network classifier for the biomedical text mining domain, while not a top performing classifier in the challenge, performed above the central tendency of all submissions, and therefore indicates a promising new avenue to investigate further in bibliome informatics.


Subject(s)
Abstracting and Indexing/classification , Computational Biology/methods , Data Mining/methods , Protein Interaction Mapping/classification , Algorithms , Databases, Bibliographic , Neural Networks, Computer , Periodicals as Topic
2.
Genome Biol ; 9 Suppl 2: S11, 2008.
Article in English | MEDLINE | ID: mdl-18834489

ABSTRACT

BACKGROUND: We participated in three of the protein-protein interaction subtasks of the Second BioCreative Challenge: classification of abstracts relevant for protein-protein interaction (interaction article subtask [IAS]), discovery of protein pairs (interaction pair subtask [IPS]), and identification of text passages characterizing protein interaction (interaction sentences subtask [ISS]) in full-text documents. We approached the abstract classification task with a novel, lightweight linear model inspired by spam detection techniques, as well as an uncertainty-based integration scheme. We also used a support vector machine and singular value decomposition on the same features for comparison purposes. Our approach to the full-text subtasks (protein pair and passage identification) includes a feature expansion method based on word proximity networks. RESULTS: Our approach to the abstract classification task (IAS) was among the top submissions for this task in terms of measures of performance used in the challenge evaluation (accuracy, F-score, and area under the receiver operating characteristic curve). We also report on a web tool that we produced using our approach: the Protein Interaction Abstract Relevance Evaluator (PIARE). Our approach to the full-text tasks resulted in one of the highest recall rates as well as mean reciprocal rank of correct passages. CONCLUSION: Our approach to abstract classification shows that a simple linear model, using relatively few features, can generalize and uncover the conceptual nature of protein-protein interactions from the bibliome. Because the novel approach is based on a rather lightweight linear model, it can easily be ported and applied to similar problems. In full-text problems, the expansion of word features with word proximity networks is shown to be useful, although the need for some improvements is discussed.


Subject(s)
Abstracting and Indexing , Databases, Bibliographic , Semantics , Algorithms , Area Under Curve , Linear Models , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...