Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 118(1): 014801, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28106423

ABSTRACT

Direct acceleration of electrons in a coherent, intense light field is revealed by a remarkable increase of the electron number in the MeV energy range. Laser irradiation of thin polymer foils with a peak intensity of ∼1×10^{20} W/cm^{2} releases electron bunches along the laser propagation direction that are postaccelerated in the partly transmitted laser field. They are decoupled from the laser field at high kinetic energies, when a second foil target at an appropriate distance prevents their subsequent deceleration in the declining laser field. The scheme is established with laser pulses of high temporal contrast (10^{10} peak to background ratio) and two ultrathin polymer foils at a distance of 500 µm. 2D particle in cell simulations and an analytical model confirm a significant change of the electron spectral distribution due to the double foil setup, which leads to an amplification of about 3 times of the electron number around a peak at 1 MeV electron energy. The result verifies a theoretical concept of direct electron bunch acceleration in a laser field that is scalable to extreme acceleration potential gradients. This method can be used to enhance the density and energy spread of electron bunches injected into postaccelerator stages of laser driven radiation sources.

2.
Rev Sci Instrum ; 84(5): 053302, 2013 May.
Article in English | MEDLINE | ID: mdl-23742540

ABSTRACT

We report on the absolute calibration of a microchannel plate (MCP) detector, used in conjunction with a Thomson parabola spectrometer. The calibration delivers the relation between a registered count numbers in the CCD camera (on which the MCP phosphor screen is imaged) and the number of ions incident on MCP. The particle response of the MCP is evaluated for positive, negative, and neutral particles at energies below 1 MeV. As the response of MCP depends on the energy and the species of the ions, the calibration is fundamental for the correct interpretation of the experimental results. The calibration method and arrangement exploits the unique emission symmetry of a specific source of fast ions and atoms driven by a high power laser.

3.
Phys Rev Lett ; 110(21): 215004, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23745890

ABSTRACT

We experimentally demonstrate a notably enhanced acceleration of protons to high energy by relatively modest ultrashort laser pulses and structured dynamical plasma targets. Realized by special deposition of snow targets on sapphire substrates and using carefully planned prepulses, high proton yields emitted in a narrow solid angle with energy above 21 MeV were detected from a 5 TW laser. Our simulations predict that using the proposed scheme protons can be accelerated to energies above 150 MeV by 100 TW laser systems.


Subject(s)
Lasers , Particle Accelerators , Plasma Gases/chemistry , Protons , Nuclear Physics
4.
Rev Sci Instrum ; 83(8): 083301, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22938287

ABSTRACT

Liquid ethanol (C(2)H(5)OH) was used to generate a spray of sub-micron droplets. Sprays with different nozzle geometries have been tested and characterised using Mie scattering to find scaling properties and to generate droplets with different diameters within the spray. Nozzles having throat diameters of 470 µm and 560 µm showed generation of ethanol spray with droplet diameters of (180 ± 10) nm and (140 ± 10) nm, respectively. These investigations were motivated by the observation of copious negative ions from these target systems, e.g., negative oxygen and carbon ions measured from water and ethanol sprays irradiated with ultra-intense (5 × 10(19) W/cm(2)), ultra short (40 fs) laser pulses. It is shown that the droplet diameter and the average atomic density of the spray have a significant effect on the numbers and energies of accelerated ions, both positive and negative. These targets open new possibilities for the creation of efficient and compact sources of different negative ion species.

SELECTION OF CITATIONS
SEARCH DETAIL
...