Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Res ; 50(11): 1153-1164, 2016.
Article in English | MEDLINE | ID: mdl-27558512

ABSTRACT

While nanoparticles (NPs) are increasingly used in a variety of consumer products and medical applications, some of these materials have potential health concerns. Macrophages are the primary responders to particles that initiate oxidative stress and inflammatory reactions. Here, we utilized six flame-synthesized, engineered iron oxide NPs with various physicochemical properties (e.g. Fe oxidation state and crystal size) to study their interactions with RAW 264.7 macrophages, their iron solubilities, and their abilities to produce hydroxyl radical in an acellular assay. Both iron solubility and hydroxyl radical production varied between NPs depending on crystalline diameter and surface area of the particles, but not on iron oxidation state. Macrophage treatment with the iron oxide NPs showed a dose-dependent increase of heme oxygenase 1 (HO-1) and NAD(P)H:quinone oxidoreductase (NQO-1). The nuclear factor (NF)-erythroid-derived 2 (E2)-related factor 2 (Nrf2) modulates the transcriptional activity of antioxidant response element (ARE)-driven genes, such as HO-1 and NQO-1. Here, we show that the iron oxide NPs activate Nrf2, leading to its increased nuclear accumulation and enhanced Nrf2 DNA-binding activity in NP-treated RAW 264.7 macrophages. Iron solubility and acellular hydroxyl radical generation depend on the physical properties of the NPs, especially crystalline diameter; however, these properties are weakly linked to the activation of cellular signaling of Nrf2 and the expression of oxidative stress markers. Overall, our work shows for the first time that iron oxide nanoparticles induce cellular marker genes of oxidative stress and that this effect is transcriptionally mediated through the Nrf2-ARE signaling pathway in macrophages.


Subject(s)
Cell Survival/drug effects , Ferric Compounds/metabolism , Nanoparticles/metabolism , Hydroxyl Radical , Macrophages , Oxidative Stress , Reactive Oxygen Species , Signal Transduction , Transfection
2.
PLoS One ; 9(2): e88723, 2014.
Article in English | MEDLINE | ID: mdl-24520417

ABSTRACT

The increasing use of manufactured nanoparticles (NP) in different applications has triggered the need to understand their putative ecotoxicological effects in the environment. Copper oxide nanoparticles (CuO NP) are toxic, and induce oxidative stress and other pathophysiological conditions. The unique properties of NP can change depending on the characteristics of the media they are suspended in, altering the impact on their toxicity to aquatic organisms in different environments. Here, Mozambique tilapia (O. mossambicus) were exposed to flame synthesized CuO NP (0.5 and 5 mg · L(-1)) in two environmental contexts: (a) constant freshwater (FW) and (b) stepwise increase in environmental salinity (SW). Sublethal effects of CuO NP were monitored and used to dermine exposure endpoints. Fish exposed to 5 mg · L(-1) CuO in SW showed an opercular ventilation rate increase, whereas fish exposed to 5 mg · L(-1) in FW showed a milder response. Different effects of CuO NP on antioxidant enzyme activities, accumulation of transcripts for metal-responsive genes, GSH ∶ GSSG ratio, and Cu content in fish gill and liver also demonstrate that additive osmotic stress modulates CuO NP toxicity. We conclude that the toxicity of CuO NP depends on the particular environmental context and that salinity is an important factor for modulating NP toxicity in fish.


Subject(s)
Copper/toxicity , Environment , Nanoparticles/toxicity , Salinity , Tilapia/physiology , Animals , Antioxidants/metabolism , Copper/metabolism , Crystallization , Fresh Water , Gene Expression Regulation/drug effects , Gills/drug effects , Gills/enzymology , Glutathione/metabolism , Liver/drug effects , Liver/enzymology , Nanoparticles/ultrastructure , Particle Size , Static Electricity , Stress, Physiological/drug effects , Stress, Physiological/genetics , Tilapia/genetics
3.
Aerosol Sci Technol ; 47(2): 169-176, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23645964

ABSTRACT

We utilized gas-phase diffusion flame synthesis, which has potential for large-scale production of metal oxide nanoparticles, to produce iron oxide nanoparticles (IONPs) with variable oxidation states. The efficacy of these materials in removal of arsenate (As(V) ) from water was assessed. Two different flame configurations, a diffusion flame (DF) and an inverse diffusion flame (IDF), were employed to synthesize six different IONPs by controlling flame conditions. The IONPs produced in the IDF configuration (IDF-IONPs) had smaller particle diameters (4.8 - 8.2 nm) and larger surface areas (141-213 m2/g) than the IONPs produced in the DF configuration (29 nm, 36 m2/g), which resulted in their higher adsorption capacities. As(V) adsorption capacities of the IDF-IONPs increased when the IONPs were synthesized in more oxidizing conditions. The fully oxidized IDF-IONPs, maghemite (γ-Fe2O3), showed the highest As(V) adsorption capacity, comparable to that of magnetite nanocrystals synthesized by thermal decomposition of iron pentacarbonyl and equivalent to three to four times higher capacity than that of a commonly used goethite-based adsorbent. All IONPs were magnetically responsive, which is of great importance for solid-liquid separation. This study demonstrates that the IONPs synthesized in gas-phase flame, particularly IDF-IONPs, are excellent adsorbents because of their high As(V) sorption capacity, potential for large-scale production, and useful magnetic property.

4.
Part Fibre Toxicol ; 10: 1, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23305071

ABSTRACT

The deposition, clearance and translocation of europium-doped gadolinium oxide nanoparticles in a mouse lung were investigated experimentally. Nanoparticles were synthesized by spray flame pyrolysis. The particle size, crystallinity and surface properties were characterized. Following instillation, the concentrations of particles in organs were determined with inductively coupled plasma mass spectrometry. The protein corona coating the nanoparticles was found to be similar to the coating on more environmentally relevant nanoparticles such as iron oxide. Measurements of the solubility of the nanoparticles in surrogates of biological fluids indicated very little propensity for dissolution, and the elemental ratio of particle constituents did not change, adding further support to the contention that intact nanoparticles were measured. The particles were intratracheally instilled into the mouse lung. After 24 hours, the target organs were harvested, acid digested and the nanoparticle mass in each organ was measured by inductively coupled plasma mass spectrometry (ICP-MS). The nanoparticles were detected in all the studied organs at low ppb levels; 59% of the particles remained in the lung. A significant amount of particles was also detected in the feces, suggesting fast clearance mechanisms. The nanoparticle system used in this work is highly suitable for quantitatively determining deposition, transport and clearance of nanoparticles from the lung, providing a quantified measure of delivered dose.


Subject(s)
Europium/chemistry , Gadolinium/pharmacokinetics , Lung/metabolism , Nanoparticles/chemistry , Animals , Crystallization , Gadolinium/chemistry , Inhalation Exposure , Male , Metabolic Clearance Rate , Mice , Microscopy, Electron, Transmission , Organ Specificity , Particle Size , Solubility , Spectrophotometry, Atomic , Staining and Labeling , Surface Properties , Tissue Distribution , X-Ray Diffraction
5.
Microfluid Nanofluidics ; 13(3): 461-468, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-23066382

ABSTRACT

The dynamics of superparamagnetic particles subject to competing magnetic and viscous drag forces have been examined with a uniform, stationary, external magnetic field. In this approach, competing drag and magnetic forces were created in a fluid suspension of superparamagnetic particles that was confined in a capillary tube; competing viscous drag and magnetic forces were established by rotating the tube. A critical Mason number was determined for conditions under which the rotation of the capillary prevents the formation of chains from individual particles. The statistics of chain length were investigated by image analysis while varying parameters such as the rotation speed and the viscosity of the liquid. The measurements showed that the rate of particle chain formation was decreased with increased viscosity and rotation speed ; the particle dynamics could be quantified by the same dimensionless Mason number that has been demonstrated for rotating magnetic fields. The potential for enhancement of mixing in a bioassay was assessed using a fast chemical reaction that was diffusion-limited. Reducing the Mason below the critical value, so that chains were formed in the fluid, gave rise to a modest improvement in the time to completion of the reaction.

6.
Nanotoxicology ; 6: 837-46, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22149273

ABSTRACT

Aggregation of metal oxide nanoparticles in aqueous media complicates interpretation of in vitro studies of nanoparticle-cell interactions. We used dynamic light scattering to investigate the aggregation dynamics of iron oxide and zinc oxide nanoparticles. Our results show that iron oxide particles aggregate more readily than zinc oxide particles. Pretreatment with serum stabilises iron oxide and zinc oxide nanoparticles against aggregation. Serum-treated iron oxide is stable only in pure water, while zinc oxide is stable in water or cell culture media. These findings, combined with zeta potential measurements and quantification of proteins adsorbed on particle surface, suggest that serum stabilisation of iron oxide particles occurs primarily through protein adsorption and resulting net surface charge. Zinc oxide stabilisation, however, also involves steric hindrance of particle aggregation. Fluid shear at levels used in flow experiments breaks up iron oxide particle aggregates. These results enhance our understanding of nanoparticle aggregation and its consequences for research on the biological effects of nanomaterials.


Subject(s)
Blood Proteins/physiology , Ferric Compounds/chemistry , Metal Nanoparticles , Adsorption , Microscopy, Electron, Transmission , Particle Size , Scattering, Radiation
7.
Toxicol Sci ; 124(2): 472-86, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21914721

ABSTRACT

Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth.


Subject(s)
Air Pollutants/toxicity , Fires , Inhalation Exposure/adverse effects , Lung/drug effects , Soot/toxicity , Air Pollutants/chemistry , Animals , Animals, Newborn , Antioxidants/metabolism , Cell Survival/drug effects , Cell Survival/genetics , Gene Expression/drug effects , Gene Expression Profiling , Lung/growth & development , Lung/metabolism , Lung/pathology , Male , Microscopy, Electron, Transmission , Oxidative Stress/drug effects , Oxidative Stress/genetics , Particle Size , Proliferating Cell Nuclear Antigen/genetics , Rats , Rats, Sprague-Dawley , Soot/chemistry , Surface Properties
8.
Environ Pollut ; 159(5): 1277-82, 2011 May.
Article in English | MEDLINE | ID: mdl-21333422

ABSTRACT

CuO nanoparticles (CuO-NP) were synthesized in a hydrogen diffusion flame. Particle size and morphology were characterized using scanning mobility particle sizing, Brunauer-Emmett-Teller analysis, dynamic light scattering, and transmission electron microscopy. The solubility of CuO-NP varied with both pH and presence of other ions. CuO-NP and comparable doses of soluble Cu were applied to duckweeds, Landoltia punctata. Growth was inhibited 50% by either 0.6 mg L(-1) soluble copper or by 1.0 mg L(-1) CuO-NP that released only 0.16 mg L(-1) soluble Cu into growth medium. A significant decrease of chlorophyll was observed in plants stressed by 1.0 mg L(-1) CuO-NP, but not in the comparable 0.2 mg L(-1) soluble Cu treatment. The Cu content of fronds exposed to CuO-NP is four times higher than in fronds exposed to an equivalent dose of soluble copper, and this is enough to explain the inhibitory effects on growth and chlorophyll content.


Subject(s)
Copper/toxicity , Magnoliopsida/drug effects , Nanoparticles/toxicity , Chlorophyll/metabolism , Copper/metabolism , Magnoliopsida/growth & development , Magnoliopsida/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
9.
Inhal Toxicol ; 22 Suppl 2: 70-83, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20961279

ABSTRACT

Current studies of particulate matter (PM) are confounded by the fact that PM is a complex mixture of primary (crustal material, soot, metals) and secondary (nitrates, sulfates, and organics formed in the atmosphere) compounds with considerable variance in composition by sources and location. We have developed a laboratory-based PM that is replicable, does not contain dust or metals and that can be used to study specific health effects of PM composition in animal models. We exposed both neonatal (7 days of age) and adult rats to a single 6-h exposure of laboratory generated fine diffusion flame particles (DFP; 170 µg/m(3)), or filtered air. Pulmonary gene and protein expression as well as indicators of cytotoxicity were evaluated 24 h after exposure. Although DFP exposure did not alter airway epithelial cell composition in either neonates or adults, increased lactate dehydrogenase activity was found in the bronchoalveolar lavage fluid of neonates indicating an age-specific increase in susceptibility. In adults, 16 genes were differentially expressed as a result of DFP exposure whereas only 6 genes were altered in the airways of neonates. Glutamate cysteine ligase protein was increased in abundance in both DFP exposed neonates and adults indicating an initiation of antioxidant responses involving the synthesis of glutathione. DFP significantly decreased catalase gene expression in adult airways, although catalase protein expression was increased by DFP in both neonates and adults. We conclude that key airway antioxidant enzymes undergo changes in expression in response to a moderate PM exposure that does not cause frank epithelial injury and that neonates have a different response pattern than adults.


Subject(s)
Antioxidants/metabolism , Inhalation , Lung/pathology , Particulate Matter/toxicity , Respiratory System/pathology , Soot/toxicity , Administration, Inhalation , Age Factors , Animals , Animals, Newborn , Bronchoalveolar Lavage Fluid , Catalase/metabolism , Gene Expression , Glutamate-Cysteine Ligase/metabolism , Male , Particle Size , Rats , Rats, Sprague-Dawley , Respiratory System/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...