Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 4(3): 926-942, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-36131827

ABSTRACT

In this study, different concentrations (0, 0.02, 0.04, and 0.06 wt%) of Mo doped onto La2O3 nanostructures were synthesized using a one-pot co-precipitation process. The aim was to study the ability of Mo-doped La2O3 samples to degrade toxic methylene blue dye in different pH media. The bactericidal potential of synthesized samples was also investigated. The structural properties of prepared samples were examined by XRD. The observed XRD spectrum of La2O3 showed a cubic and hexagonal structure, while no change was recorded in Mo-doped La2O3 samples. Doping with Mo improved the crystallinity of the samples. UV-Vis spectrophotometry and density functional theory calculations were used to assess the optical characteristics of Mo-La2O3. The band gap energy was reduced while the absorption spectra showed prominent peaks due to Mo doping. The HR-TEM results revealed the rod-like morphology of La2O3. The rod-like network appeared to become dense upon doping. A significant degradation of MB was confirmed with Mo; furthermore, the bactericidal activities against S. aureus and E. coli were measured as 5.05 mm and 5.45 mm inhibition zones, respectively, after doping with a high concentration (6%) of Mo.

2.
ACS Omega ; 7(30): 26715-26722, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936465

ABSTRACT

Metal-based antimicrobials have the potential to profile sustainable solutions to infection care and health. In this study, we report the synthesis of rGO-ZnO hybrid nanostructures by a simple co-precipitation approach with various mass ratios of GO, and their antimicrobial potential was assessed. The structural analysis confirms the presence of a hexagonal wurtzite structure with peak shifting in hybrid nanostructures and increases in crystallite size (11-24 nm). Raman spectra revealed GO doping in the D band (1350 cm-1) and G band (1590 cm-1). Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were performed to investigate the surface morphologies of the synthesized sediments, which showed a change in the morphology of ZnO from non-uniform spherical nanoparticles to a rod-like morphology of the prepared hybrid nanostructures. RAMAN spectra revealed that the retained functional groups on rGO planes were significant in anchoring ZnO to rGO. At lowest and maximum doses of ZnO, substantial bactericidal zones (p < 0.05) for S. aureus (1.55 and 1.95 mm) and E. coli (1.25 and 1.70 mm) were achieved accordingly. Additionally, the inhibition regions were 2.45-3.85 mm and 3.75-6.85 mm for S. aureus whereas (2.05-3.25 mm) and (2.95-3.90 mm) for E. coli at the lowest and maximum concentrations.

3.
Adv Colloid Interface Sci ; 300: 102597, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34979471

ABSTRACT

Nanotechnology is one of the emerging fields of the 21st Century. Many new devices and patentable technology is based on nanomaterials (NMs). One of the dominant factors in the use of nanomaterials and their applications in various fields is the synthesis and growth mechanism of nanostructures and nanomaterials. A nanostructured material may have been a good candidate in one application but could be more useful in a different application if synthesized by a different mechanism and technique. Similarly, the structure and morphology of a nanomaterial also depend upon the method of growth and synthesis. For example, it is easy to grow and synthesize amorphous nanostructured thin film using the plasma magnetron sputtering technique, but it may be difficult to obtain a similar structure using the thermal evaporation process due to the nature of the technique itself. In this study, the Top-down and Bottom-up methods and techniques of synthesizing nanostructured materials are reviewed, compared, and analyzed. Both approaches are critically analyzed, and the influencing factors on the synthesis of different nanomaterials, the advantages, and disadvantages of each technique are reported. This review also provides a step-by-step analysis of the choice of method for the synthesis of namomaterials for specific applications.


Subject(s)
Nanostructures , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...