Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38083468

ABSTRACT

Signal quality significantly affects the processing, analysis, and interpretation of biomedical signals. There are many procedures for assessing signal quality that use averaged numerical values, thresholding, analysis in the time or frequency domain, or nonlinear approaches. An interesting approach to the assessment of signal quality is using symmetric projection attractor reconstruction (SPAR) analysis, which transforms an entire signal into a two-dimensional plot that reflects the waveform morphology. In this study, we present an application of SPAR to evaluate the quality of seismocardiograms (SCG signals) from the CEBS database, a publicly available seismocardiogram signal database. Visual inspection of symmetric projection attractors suggests that high-quality (clean) seismocardiogram projections resemble six-pointed asterisks (*), and any deviation from this shape suggests the influence of noise and artifacts.Clinical relevance- SPAR analysis enables quick identification of noise and artifacts that can affect the reliability of the diagnosis of cardiovascular diseases based on SCG signals.


Subject(s)
Cardiovascular Diseases , Signal Processing, Computer-Assisted , Humans , Reproducibility of Results
2.
Int J Data Min Bioinform ; 11(2): 167-79, 2015.
Article in English | MEDLINE | ID: mdl-26255381

ABSTRACT

Predicting the class of gene expression profiles helps improve the diagnosis and treatment of diseases. Analysing huge gene expression data otherwise known as microarray data is complicated due to its high dimensionality. Hence the traditional classifiers do not perform well where the number of features far exceeds the number of samples. A good set of features help classifiers to classify the dataset efficiently. Moreover, a manageable set of features is also desirable for the biologist for further analysis. In this paper, we have proposed a linear regression-based feature selection method for selecting discriminative features. Our main focus is to classify the dataset more accurately using less number of features than other traditional feature selection methods. Our method has been compared with several other methods and in almost every case the classification accuracy is higher using less number of features than the other popular feature selection methods.


Subject(s)
Computer Simulation , Gene Expression Profiling/methods , Linear Models , Neoplasm Proteins/metabolism , Oligonucleotide Array Sequence Analysis/methods , Data Interpretation, Statistical , Database Management Systems , Databases, Protein , Humans , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...