Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 11(2)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36851141

ABSTRACT

The ongoing antibiotic-resistance crisis is becoming a global problem affecting public health. Urgent efforts are required to design novel therapeutics against pathogenic bacterial species. Brucella melitensis is an etiological agent of brucellosis, which mostly affects sheep and goats but several cases have also been reported in cattle, water buffalo, yaks and dogs. Infected animals also represent the major source of infection for humans. Development of safer and effective vaccines for brucellosis remains a priority to support disease control and eradication in animals and to prevent infection to humans. In this research study, we designed an in-silico multi-epitopes vaccine for B. melitensis using computational approaches. The pathogen core proteome was screened for good vaccine candidates using subtractive proteomics, reverse vaccinology and immunoinformatic tools. In total, 10 proteins: catalase; siderophore ABC transporter substrate-binding protein; pyridoxamine 5'-phosphate oxidase; superoxide dismutase; peptidylprolyl isomerase; superoxide dismutase family protein; septation protein A; hypothetical protein; binding-protein-dependent transport systems inner membrane component; and 4-hydroxy-2-oxoheptanedioate aldolase were selected for epitopes prediction. To induce cellular and antibody base immune responses, the vaccine must comprise both B and T-cells epitopes. The epitopes were next screened for antigenicity, allergic nature and water solubility and the probable antigenic, non-allergic, water-soluble and non-toxic nine epitopes were shortlisted for multi-epitopes vaccine construction. The designed vaccine construct comprises 274 amino acid long sequences having a molecular weight of 28.14 kDa and instability index of 27.62. The vaccine construct was further assessed for binding efficacy with immune cell receptors. Docking results revealed that the designed vaccine had good binding potency with selected immune cell receptors. Furthermore, vaccine-MHC-I, vaccine-MHC-II and vaccine-TLR-4 complexes were opted based on a least-binding energy score of -5.48 kcal/mol, 0.64 kcal/mol and -2.69 kcal/mol. Those selected were then energy refined and subjected to simulation studies to understand dynamic movements of the docked complexes. The docking results were further validated through MMPBSA and MMGBSA analyses. The MMPBSA calculated -235.18 kcal/mol, -206.79 kcal/mol, and -215.73 kcal/mol net binding free energy, while MMGBSA estimated -259.48 kcal/mol, -206.79 kcal/mol and -215.73 kcal/mol for TLR-4, MHC-I and MHC-II complexes, respectively. These findings were validated by water-swap and entropy calculations. Overall, the designed vaccine construct can evoke proper immune responses and the construct could be helpful for experimental researchers in formulation of a protective vaccine against the targeted pathogen for both animal and human use.

2.
J Biomol Struct Dyn ; 41(20): 10859-10868, 2023 12.
Article in English | MEDLINE | ID: mdl-36533379

ABSTRACT

In 2022, the ongoing multi-country outbreak of monkeypox virus-now occurring outside Africa, too is a global health concern. Monkeypox is a zoonotic virus, which causes disease mainly in animals, and then it is transferred to humans. Recently, in the monkeypox epidemic, a large number of human cases emerged while the global health community worked to tackle the outbreak and save lives. Herein, a multi-epitope-based vaccine is designed against monkeypox virus using two surface-associated proteins: MPXVgp002 accession number > YP_010377003.1 and MPXVgp008 accession number > YP_010377007.1 proteins. These proteins were utilized for B- and T-cell epitopes prediction. The epitopes were further screened, and the screen filtered KCKDNEYRSR, RSCNTTHNR, and RTRRETGAS with the antigenicity scores of 0.5279, 0.5604, and 0.7628, respectively. Overall, the epitopes can induce immunity in 99.74% population of the world. Further, GPGPG linkers were used for joining the epitopes and EAAAK linker was used for adjuvant attachment. It has a three-dimensional structure modelled for retaining the structural stability. Three pairs of amino acid residues that were able to make disulfide bonds were chosen: Gly1-Ser82, Cys7-Tyr10, and Phe51-Ile55. Molecular docking of vaccine was done with toll-like receptors, viz., 2, 3, 4, and 8 immune cell receptors. The docking results revealed that the vaccine as potential molecule due to its better binding affinity with toll-like receptors 2, 3, 4 and 8. Top complex in docking in with each receptor was selected based on lowest energy scores- -888.7 kcal/mol (TLR-2), -976.3 kcal/mol (TLR-3), -801.9 kcal/mol (TLR-4), and -955.4 kcal/mol (TLR-4)-were subjected to simulation. The docked complexes were evaluated in 500 ns of MD simulation. Throughout the simulation time, no significant deviation occurred. This confirmed that the vaccine as potential vaccine candidate to interact with immune cell receptors. This interaction is important for the immune system activation. In conclusion, the proposed vaccine construct against monkeypox could induce an effective immune response and speed up the vaccine development process. However, the study is completely based on the computational approach, hence, the experimental validation is required.Communicated by Ramaswamy H. Sarma.


Subject(s)
Mpox (monkeypox) , Vaccines , Animals , Humans , Monkeypox virus , Membrane Proteins , Molecular Docking Simulation , Toll-Like Receptor 4 , Epitopes, T-Lymphocyte , Epitopes, B-Lymphocyte , Vaccines, Subunit , Computational Biology
3.
J Biomol Struct Dyn ; 41(18): 8682-8689, 2023.
Article in English | MEDLINE | ID: mdl-36264138

ABSTRACT

Studies have established that proteolytic enzyme inhibition holds significant promise in cancer prevention and treatment. Cathepsin C (CatC) is conserved lysosomal cysteine dipeptidyl aminopeptidase, which is the key for pro-inflammatory neutrophil serine protease activation and biological functioning. This makes CatC as a promising therapeutic drug target for the management of different cancer types. Considering this, using a wide range of computer aided drug-designing applications, several inhibitors are shortlisted against CatC active pocket, which interact with the enzyme with high affinity and form strong intermolecular interaction network. Compared to control, three molecules ASN_06916232, ASN_06917112 and ASN_06916892 are filtered as best binders of the CatC active pocket with binding energy value of -10.9 kcal/mol, -10.9 kcal/mol and -10.7 kcal/mol, respectively. These compounds interact with several important active side residues of CatC such as Ser233, Cys234, Gly277, Asn380 and His38. Furthermore, the complexes of these compounds with CatC reveal very stable dynamics with average RMSD value less than 3 Å. The binding energy analysis further indicates the compounds to have very stable van der Waals and electrostatic energies. In conclusion, these molecules are promising and require experimental validation to prove them as anti-CatC molecules.Communicated by Ramaswamy H. Sarma.

4.
Front Chem ; 10: 1071929, 2022.
Article in English | MEDLINE | ID: mdl-36505741

ABSTRACT

Fibroblast growth factor 2 (FGF2) is a key player in cancer and tissue homeostasis and regulates renewal of several stem cell types. The FGF2 role in malignant glioma is proven and tagged FGF2, a novel druggable target, is used for developing potent drugs against glioblastoma. In this study, Asinex 51412372, Asinex 51217461, and Asinex 51216586 were filtered to show the best binding affinity for FGF2 with binding energy scores of -8.3 kcal/mol, -8.2 kcal/mol, and -7.8 kcal/mol, respectively. The compounds showed chemical interactions with several vital residues of FGF2 along the compound length. The noticeable residues that interacted with the compounds were Arg15, Asp23, Arg63, and Gln105. In dynamic investigation in solution, the FGF2 reported unstable dynamics in the first 100 ns and gained structural equilibrium in the second phase of 100 ns. The maximum root mean square deviation (RMSD) value touched by the systems is 3 Å. Similarly, the residue flexibility of FGF2 in the presence of compounds was within a stable range and is compact along the simulation time length. The compounds showed robust atomic-level stable energies with FGF2, which are dominated by both van der Waals and electrostatic interactions. The net binding energy of systems varies between -40 kcal/mol and -86 kcal/mol, suggesting the formation of strong intermolecular docked complexes. The drug-likeness and pharmacokinetic properties also pointed toward good structures that are not toxic, have high gastric absorption, showed good distribution, and readily excreted from the body. In summary, the predicted compounds in this study might be ideal hits that might be further optimized for structure and activity during experimental studies.

5.
Molecules ; 27(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432204

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronaviruses that emerged in China at Wuhan city, Hubei province during December 2019. Subsequently, SARS-CoV-2 has spread worldwide and caused millions of deaths around the globe. Several compounds and vaccines have been proposed to tackle this crisis. Novel recommended in silico approaches have been commonly used to screen for specific SARS-CoV-2 inhibitors of different types. Herein, the phytochemicals of Pakistani medicinal plants (especially Artemisia annua) were virtually screened to identify potential inhibitors of the SARS-CoV-2 main protease enzyme. The X-ray crystal structure of the main protease of SARS-CoV-2 with an N3 inhibitor was obtained from the protein data bank while A. annua phytochemicals were retrieved from different drug databases. The docking technique was carried out to assess the binding efficacy of the retrieved phytochemicals; the docking results revealed that several phytochemicals have potential to inhibit the SARS-CoV-2 main protease enzyme. Among the total docked compounds, the top-10 docked complexes were considered for further study and evaluated for their physiochemical and pharmacokinetic properties. The top-3 docked complexes with the best binding energies were as follows: the top-1 docked complex with a -7 kcal/mol binding energy score, the top-2 docked complex with a -6.9 kcal/mol binding energy score, and the top-3 docked complex with a -6.8 kcal/mol binding energy score. These complexes were subjected to a molecular dynamic simulation analysis for further validation to check the dynamic behavior of the selected top-complexes. During the whole simulation time, no major changes were observed in the docked complexes, which indicated complex stability. Additionally, the free binding energies for the selected docked complexes were also estimated via the MM-GB/PBSA approach, and the results revealed that the total delta energies of MMGBSA were -24.23 kcal/mol, -26.38 kcal/mol, and -25 kcal/mol for top-1, top-2, and top-3, respectively. MMPBSA calculated the delta total energy as -17.23 kcal/mol (top-1 complex), -24.75 kcal/mol (top-2 complex), and -24.86 kcal/mol (top-3 complex). This study explored in silico screened phytochemicals against the main protease of the SARS-CoV-2 virus; however, the findings require an experimentally based study to further validate the obtained results.


Subject(s)
Artemisia annua , COVID-19 Drug Treatment , Humans , SARS-CoV-2 , Coronavirus 3C Proteases , Phytochemicals/pharmacology
6.
Vaccines (Basel) ; 10(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36298444

ABSTRACT

The emergence of antibiotic resistance in bacterial species is a major threat to public health and has resulted in high mortality as well as high health care costs. Burkholderia mallei is one of the etiological agents of health care-associated infections. As no licensed vaccine is available against the pathogen herein, using reverse vaccinology, bioinformatics, and immunoinformatics approaches, a multi-epitope-based vaccine against B. mallei was designed. In completely sequenced proteomes of B. mallei, 18,405 core, 3671 non-redundant, and 14,734 redundant proteins were predicted. Among the 3671 non-redundant proteins, 3 proteins were predicted in the extracellular matrix, 11 were predicted as outer membrane proteins, and 11 proteins were predicted in the periplasmic membrane. Only two proteins, type VI secretion system tube protein (Hcp) and type IV pilus secretin proteins, were selected for epitope prediction. Six epitopes, EAMPERMPAA, RSSPPAAGA, DNRPISINL, RQRFDAHAR, AERERQRFDA, and HARAAQLEPL, were shortlisted for multi-epitopes vaccine design. The predicted epitopes were linked to each other via a specific GPGPG linker and the epitopes peptide was then linked to an adjuvant molecule through an EAAAK linker to make the designed vaccine more immunologically potent. The designed vaccine was also found to have favorable physicochemical properties with a low molecular weight and fewer transmembrane helices. Molecular docking studies revealed vaccine construct stable binding with MHC-I, MHC-II, and TLR-4 with energy scores of -944.1 kcal/mol, -975.5 kcal/mol, and -1067.3 kcal/mol, respectively. Molecular dynamic simulation assay noticed stable dynamics of the docked vaccine-receptors complexes and no drastic changes were observed. Binding free energies estimation revealed a net value of -283.74 kcal/mol for the vaccine-MHC-I complex, -296.88 kcal/mol for the vaccine-MHC-II complex, and -586.38 kcal/mol for the vaccine-TLR-4 complex. These findings validate that the designed vaccine construct showed promising ability in terms of binding to immune receptors and may be capable of eliciting strong immune responses once administered to the host. Further evidence from experimentations in mice models is required to validate real immune protection of the designed vaccine construct against B. mallei.

SELECTION OF CITATIONS
SEARCH DETAIL
...