Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(11): e31825, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841448

ABSTRACT

Background: This review explores the evolutionary trajectory of navigation assistance tools tailored for the visually impaired, spanning from traditional aids like white canes to contemporary electronic devices. It underlines their pivotal role in fostering safe mobility for visually impaired individuals. Objectives: The primary aim is to categorize and assess the plethora of navigation assistance solutions available. Emphasis is placed on technological advancements, particularly in electronic systems employing sensors, AI, and feedback mechanisms. Furthermore, the review underscores the emerging influence of smartphone-based solutions and navigation satellite systems in augmenting independence and quality of life for the visually impaired. Methods: Navigation assistance solutions are segmented into four key categories: Visual Imagery Systems, Non-Visual Data Systems, Map-Based Solutions, and 3D Sound Systems. The integration of diverse sensors like Ultrasonic Sensors and LiDAR for obstacle detection and real-time feedback is scrutinized. Additionally, the fusion of smartphone technology with sensors to deliver location-based assistance is explored. The review also evaluates the functionality, efficacy, and cost-efficiency of navigation satellite systems. Results: Results indicate a significant evolution in navigation aids, with modern electronic systems proving highly effective in aiding obstacle detection and safe navigation. The convenience and portability of smartphone-based solutions are underscored, along with the potential of navigation satellite systems to enhance navigation assistance. Conclusions: In conclusion, the review advocates for continued innovation and technological integration in navigation tools to empower visually impaired individuals with increased independence and safe access to their surroundings. It accentuates the imperative of ongoing efforts to enhance the quality of life for those with visual impairments through futuristic technological solutions.

2.
Article in English | MEDLINE | ID: mdl-38748519

ABSTRACT

World Health Organization (WHO) has identified depression as a significant contributor to global disability, creating a complex thread in both public and private health. Electroencephalogram (EEG) can accurately reveal the working condition of the human brain, and it is considered an effective tool for analyzing depression. However, manual depression detection using EEG signals is time-consuming and tedious. To address this, fully automatic depression identification models have been designed using EEG signals to assist clinicians. In this study, we propose a novel automated deep learning-based depression detection system using EEG signals. The required EEG signals are gathered from publicly available databases, and three sets of features are extracted from the original EEG signal. Firstly, spectrogram images are generated from the original EEG signal, and 3-dimensional Convolutional Neural Networks (3D-CNN) are employed to extract deep features. Secondly, 1D-CNN is utilized to extract deep features from the collected EEG signal. Thirdly, spectral features are extracted from the collected EEG signal. Following feature extraction, optimal weights are fused with the three sets of features. The selection of optimal features is carried out using the developed Chaotic Owl Invasive Weed Search Optimization (COIWSO) algorithm. Subsequently, the fused features undergo analysis using the Self-Attention-based Gated Densenet (SA-GDensenet) for depression detection. The parameters within the detection network are optimized with the assistance of the same COIWSO. Finally, implementation results are analyzed in comparison to existing detection models. The experimentation findings of the developed model show 96% of accuracy. Throughout the empirical result, the findings of the developed model show better performance than traditional approaches.

3.
Heliyon ; 10(10): e30867, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38770323

ABSTRACT

Objective: The objectives of this research are twofold. The primary goal is to introduce, investigate, and contrast consolidative multi-criteria decision-making (C-MCDM) approaches. The second objective is the investigation of five alternative additive manufacturing materials. Methods: It integrates the subjective and objective weights using the Bayes hypothesis in conjunction with a normal method. Chang's Extent Analysis Method under fuzzy logic is used to estimate subjective weights and the CRITIC approach is used for assessing objective weights. Ranking techniques, including the simple ranking process (SRP), multi-objective optimization based on ratio analysis (MOORA), measurement alternatives and ranking according to compromise solution (MARCOS), and technique for order preference by similarity to ideal solution (TOPSIS) are applied. It also encompasses sensitivity analysis based on Kendall's coefficient of concordance and rank reversal phenomenon analysis. Spearman's rank correlation coefficient, a weighted rank measure of correlation, and rank similarity coefficient are among the metrics used to evaluate agreement between different approaches. It entails gathering expert opinions regarding the importance of various criteria as well as conducting extensive experiments. Results: The findings of the study indicate that polylactic acid is the best material to use for orthoses. When compared to the other MCDM approaches being discussed, SRP is the most reliable approach. It is also demonstrated that the SRP, MARCOS, and TOPSIS methods are rank reversal-free. Furthermore, SRP exhibits a very poor association with the TOPSIS technique but a strong correlation with the MOORA and MARCOS approaches. Conclusions: To ensure results reliability, it is necessary to consider both the subjectivity and objectivity of weights as well as apply multiple MCDM methodologies in addition to sensitivity analysis.

4.
Sensors (Basel) ; 23(16)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37631690

ABSTRACT

Hydraulic systems are used in all kinds of industries. Mills, manufacturing, robotics, and Ports require the use of Hydraulic Equipment. Many industries prefer to use hydraulic systems due to their numerous advantages over electrical and mechanical systems. Hence, the growth in demand for hydraulic systems has been increasing over time. Due to its vast variety of applications, the faults in hydraulic systems can cause a breakdown. Using Artificial-Intelligence (AI)-based approaches, faults can be classified and predicted to avoid downtime and ensure sustainable operations. This research work proposes a novel approach for the classification of the cooling behavior of a hydraulic test rig. Three fault conditions for the cooling system of the hydraulic test rig were used. The spectrograms were generated using the time series data for three fault conditions. The CNN variant, the Residual Network, was used for the classification of the fault conditions. Various features were extracted from the data including the F-score, precision, accuracy, and recall using a Confusion Matrix. The data contained 43,680 attributes and 2205 instances. After testing, validating, and training, the model accuracy of the ResNet-18 architecture was found to be close to 95%.

5.
Materials (Basel) ; 16(14)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37512177

ABSTRACT

The growing demand for Magnesium in the automotive and aviation industries has enticed the need to improve its corrosive properties. In this study, the WE43 magnesium alloys were friction stir welded (FSW) by varying the traverse speed. FSW eliminates defects such as liquefication cracking, expulsion, and voids in joints encountered frequently in fusion welding of magnesium alloys. The microstructural properties were scrutinized using light microscopy (LM) and scanning electron microscopy (SEM). Additionally, the elemental makeup of precipitates was studied using electron dispersive X-ray spectroscopy (EDS). The electrochemical behavior of specimens was evaluated by employing potentiodynamic polarization tests and was correlated with the microstructural properties. A defect-free weldment was obtained at a traverse and rotational speed of 100 mm/min and 710 rpm, respectively. All weldments significantly improved corrosion resistance compared to the base alloy. Moreover, a highly refined microstructure with redistribution/dissolution of precipitates was obtained. The grain size was reduced from 256 µm to around 13 µm. The corrosion resistance of the welded sample was enhanced by 22 times as compared to the base alloy. Hence, the reduction in grain size and the dissolution/distribution of secondary-phase particles within the Mg matrix are the primary factors for the enhancement of anti-corrosion properties.

6.
Polymers (Basel) ; 15(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37376330

ABSTRACT

Material extrusion (ME) is an additive manufacturing technique capable of producing functional parts, and its use in multi-material fabrication requires further exploration and expansion. The effectiveness of material bonding is one of the main challenges in multi-material fabrication using ME due to its processing capabilities. Various procedures for improving the adherence of multi-material ME parts have been explored, such as the use of adhesives or the post-processing of parts. In this study, different processing conditions and designs were investigated with the aim of optimizing polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) composite parts without the need for pre- or post-processing procedures. The PLA-ABS composite parts were characterized based on their mechanical properties (bonding modulus, compression modulus, and strength), surface roughness (Ra, Rku, Rsk, and Rz), and normalized shrinkage. All process parameters were statistically significant except for the layer composition parameter in terms of Rsk. The results show that it is possible to create a composite structure with good mechanical properties and acceptable surface roughness values without the need for costly post-processing procedures. Furthermore, the normalized shrinkage and the bonding modulus were correlated, indicating the ability to utilize shrinkage in 3D printing to improve material bonding.

7.
Healthcare (Basel) ; 11(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36673628

ABSTRACT

In 2020, coronavirus (COVID-19) was declared a global pandemic and it remains prevalent today. A necessity to model the transmission of the virus has emerged as a result of COVID-19's exceedingly contagious characteristics and its rapid propagation throughout the world. Assessing the incidence of infection could enable policymakers to identify measures to halt the pandemic and gauge the required capacity of healthcare centers. Therefore, modeling the susceptibility, exposure, infection, and recovery in relation to the COVID-19 pandemic is crucial for the adoption of interventions by regulatory authorities. Fundamental factors, such as the infection rate, mortality rate, and recovery rate, must be considered in order to accurately represent the behavior of the pandemic using mathematical models. The difficulty in creating a mathematical model is in identifying the real model variables. Parameters might vary significantly across models, which can result in variations in the simulation results because projections primarily rely on a particular dataset. The purpose of this work was to establish a susceptible-exposed-infected-recovered (SEIR) model describing the propagation of the COVID-19 outbreak throughout the Kingdom of Saudi Arabia (KSA). The goal of this study was to derive the essential COVID-19 epidemiological factors from actual data. System dynamics modeling and design of experiment approaches were used to determine the most appropriate combination of epidemiological parameters and the influence of COVID-19. This study investigates how epidemiological variables such as seasonal amplitude, social awareness impact, and waning time can be adapted to correctly estimate COVID-19 scenarios such as the number of infected persons on a daily basis in KSA. This model can also be utilized to ascertain how stress (or hospital capacity) affects the percentage of hospitalizations and the number of deaths. Additionally, the results of this study can be used to establish policies or strategies for monitoring or restricting COVID-19 in Saudi Arabia.

8.
Materials (Basel) ; 15(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36556587

ABSTRACT

This study investigates self-propelled rotary tool (SPRT) performance in hard turning using 3D finite element (FE) models. The FE models developed in this study are based on coupled temperature-displacement analysis using an explicit time-integration scheme. The developed FE models can predict chip morphology, cutting forces, tool and workpiece stresses and temperatures. For model verification, hard turning experiments were conducted using an SPRT on AISI 4340 bars. Cutting forces and maximum tool-chip interface temperatures were recorded and compared with the model findings. The effects of different process parameters were analyzed and discussed using the developed FE models. The FE models were run with a central composite design (CCD-25) matrix with four input variables, i.e., the cutting speed, the feed rate, the depth of the cut and the inclination angle. Response surfaces based on the Gaussian process were generated for each performance variable in order to predict design points not available in the original design of the experiment matrix. An optimization study was carried out to minimize tool stress and temperature while setting limits for the material removal rate (MRR) and specific cutting energy for the process. Optimized processes were found with moderate cutting speeds and feed rates and high depths of cut and inclination angles.

9.
Materials (Basel) ; 15(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35744115

ABSTRACT

The performance of a self-propelled rotary carbide tool when cutting hardened steel is evaluated in this study. Although various models for evaluating tool wear in traditional (fixed) tools have been introduced and deployed, there have been no efforts in the existing literature to predict the progression of tool wear while employing self-propelled rotary tools. The work-tool geometric relationship and the empirical function are used to build a flank wear model for self-propelled rotary cutting tools. Cutting experiments are conducted on AISI 4340 steel, which has a hardness of 54-56 HRC, at various cutting speeds and feeds. The rate of tool wear is measured at various intervals of time. The constant in the proposed model is obtained using genetic programming. When experimental and predicted flank wear are examined, the established model is found to be competent in estimating the rate of rotary tool flank wear progression.

10.
Materials (Basel) ; 15(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35744144

ABSTRACT

End-milling operation of steel grade material is a challenging task as it is hard-to-cut material. Proper selection of cutting tools, cutting conditions, and cutting process parameters is important to improve productivity, surface quality, and tool life. Therefore, the present study investigated the end-milling operation of AISI 1522H steel grade under minimum-quantity lubrication (MQL) conditions using a novel blend of vegetable oils, namely canola and olive oil. Cutting process parameters considered were spindle speed (s), feed rate (f), depth of cut (d), width of cut (w), and cutting conditions (c), while responses were average surface roughness (Ra), cutting forces (Fc), tool wear (TW), and material removal rate (MRR). Experimental runs were designed based on the definitive screening design (DSD) method. Analysis of variance (ANOVA) results show that feed rate significantly affects all considered responses. Nonlinear prediction models were developed for each response variable, and their validity was also verified. Finally, multi-response optimization was performed using the combinative distance-based assessment (CODAS) method coupled with criteria importance through inter-criteria correlation (CRITIC). The optimized parameters found were: s = 1200 rpm, f = 320 mm/min, d = 0.6 mm, w = 8 mm, and c = 100 mL/h. Further, it was compared with other existing multi-response optimization methods and induced good results.

11.
Materials (Basel) ; 14(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34832331

ABSTRACT

Applications of non-ferrous light metal alloys are especially popular in the field of aerospace. Hence it is important to investigate their properties in joining processes such as welding. Solid state joining process such as friction stir welding (FSW) is quite efficient for joining non-ferrous alloys, but with thick plates, challenges increase. In this study, Mg alloy plates of thickness 11.5 mm were successfully welded via single-pass FSW. Due to the dynamic recrystallization, grain size in the stir zone was reduced to 16 µm which is ≈15 times smaller than the parent material. The optimized rotational speed and traverse speed for optimum weld integrity were found to be 710 rpm and 100 mm/min, respectively. A sound weld with 98.96% joint efficiency, having an Ultimate Tensile Strength (UTS) of 161.8 MPa and elongation of 27.83%, was accomplished. Microhardness of the nugget was increased by 14.3%.

12.
Materials (Basel) ; 13(23)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33255774

ABSTRACT

The machining of ceramic materials is challenging and often impossible to realize with conventional machining tools. In various manufacturing applications, rotary ultrasonic milling (RUM) shows strengths, in particular for the development of high-quality micro-features in ceramic materials. The main variables that influence the performance and price of the product are surface roughness, edge chipping (EC), and material removal rate (MRR) during the processing of ceramics. RUM has been considered in this research for the milling of micro-pockets in bioceramic alumina (Al2O3). Response surface methodology in the context of a central composite design (CCD) is being used to plan the experiments. The impacts of important RUM input parameters concerning cutting speed, feed rate, depth of cut, frequency, and amplitude have been explored on the surface roughness in terms of arithmetic mean value (Ra), the EC, and the MRR of the machined pockets. The main effect and the interaction effect of the implemented RUM parameters show that by providing a lower feed rate and cutting depth levels and elevated frequency and cutting speed, the Ra and the EC can be minimized. At greater levels of feed rate and cutting depth, higher MRR can be obtained. The influence of RUM input parameters on the surface morphology was also recorded and analyzed using scanning electron microscopic (SEM) images. The study of the energy dispersive spectroscopy (EDS) shows that there is no modification in the alumina bioceramic material. Additionally, a multi-response optimization method has been applied by employing a desirability approach with the core objectives of minimizing the EC and Ra and maximizing the MRR of the milled pockets. The obtained experimental values for Ra, EC, and MRR at an optimized parametric setting were 0.301 µm, 12.45 µm, and 0.873 mm3/min respectively with a combined desirability index value of 0.73.

13.
Materials (Basel) ; 13(22)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187305

ABSTRACT

This paper presents a model for assessing the performance of self-propelled rotary tool during the processing of hardened steel. A finite element (FE) model has been proposed in this analysis to study the hard turning of AISI 51200 hardened steel using a self-propelled rotary cutting tool. The model is developed by utilizing the explicit coupled temperature displacement analysis in the presence of realistic boundary conditions. This model does not take into account any assumptions regarding the heat partitioning and the tool-workpiece contact area. The model can predict the cutting forces, chip flow, induced stresses, and the generated temperature on the cutting tool and the workpiece. The nodal temperatures and heat flux data from the chip formation analysis are used to achieve steady-state temperatures on the cutting tool in the heat transfer analysis. The model outcomes are compared with reported experimental data and a good agreement has been found.

14.
Polymers (Basel) ; 12(9)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971747

ABSTRACT

The scope of additive manufacturing, particularly fused deposition modelling (FDM), can indeed be explored with the fabrication of multi-material composite laminates using this technology. Laminar composite structures made up of two distinct materials, namely acrylonitrile butadiene styrene (ABS) and carbon fiber reinforced polylactic acid (CF-PLA), were produced using the FDM process. The current study analyzes the effect of various printing parameters on the interfacial bond strength (IFBS) of the ABS/CF-PLA laminar composite by employing response surface methodology. The physical examination of the tested specimens revealed two failure modes, where failure mode 1 possessed high IFBS owing to the phenomenon of material patch transfer. Contrarily, failure mode 2 yielded low IFBS, while no patch transfer was observed. The analysis of variance (ANOVA) revealed that printing parameters were highly interactive in nature. After extensive experimentation, it was revealed that good quality of IFBS is attributed to the medium range of printing speed, high infill density, and low layer height. At the same time, a maximum IFBS of 20.5 MPa was achieved. The study presented an empirical relation between printing parameters and IFBS that can help in forecasting IFBS at any given printing parameters. Finally, the optimized printing conditions were also determined with the aim to maximize IFBS.

15.
Materials (Basel) ; 12(10)2019 May 20.
Article in English | MEDLINE | ID: mdl-31137496

ABSTRACT

The emergence of the aerospace sector requires efficient joining of aerospace grade aluminium alloys. For large-scale industrial practices, achievement of optimum friction stir welding (FSW) parameters is chiefly aimed at obtaining maximum strain rate in deforming material with least application of traverse force on the tool pin. Exact computation of strain rate is not possible due to complex and unexposed material flow kinematics. Estimation using micro-structural evolution serves as one of the very few methods applicable to analyze the yet unmapped interdependence of strain rate and traverse force. Therefore, the present work assessed strain rate in the stir zone using Zener Holloman parameter. The maximum and minimum strain rates of 6.95 and 0.31 s-1 were obtained for highest and least traverse force, respectively.

16.
Colloids Surf B Biointerfaces ; 179: 445-452, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31005739

ABSTRACT

This paper focuses on the development of a drug delivery system for systemically controlled release of a poorly soluble drug, letrozole. The work meticulously describes the preparation and characterizations of 2-hydroxyethyl methacrylate (HEMA) polymerization onto hydrophilic acrylamide grafted low-density polyethylene (AAm-g-LDPE) surface for targeted drug release system. The surface morphology and thickness measurement of coated pHEMA layer were measured using scanning electron microscopy (SEM). The swelling study was done in deionized (DI) water and simulated uterine fluid (SUF, pH = 7.6). In vitro release of letrozole from the system was performed in SUF. Further, the release kinetics of letrozole from the system was studied using different mathematical models. The results, suggest that the rate of drug release can be altered by varying the concentrations of cross-linker in pHEMA. The optimized sample released 72% drug at the end of 72 h of measurement.


Subject(s)
Acrylamide/chemistry , Drug Liberation , Endometriosis/drug therapy , Letrozole/therapeutic use , Polyethylene/chemistry , Polyhydroxyethyl Methacrylate/chemistry , Animals , Cell Death/drug effects , Cell Survival/drug effects , Female , Kinetics , Letrozole/pharmacology , Mice , NIH 3T3 Cells , Polymerization , Porosity
17.
Materials (Basel) ; 12(6)2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30893811

ABSTRACT

Electric discharge machining (EDM) is a material removal process that is especially useful for difficult-to-cut materials with complex shapes and is widely used in aerospace, automotive, surgical tools among other fields. EDM is one of the most efficient manufacturing processes and is used to achieve highly accurate production. It is a non-contact thermal energy process used to machine electrically conductive components irrespective of the material's mechanical properties. Studies related to the EDM have shown that the process performance can be considerably improved by properly selecting the process material and operating parameters. This paper reviews research studies on the application of EDM to different grades of stainless steel materials and describes experimental and theoretical studies of EDM that have attempted to improve the process performance, by considering material removal rate, surface quality and tool wear rate, amongst others. In addition, this paper examines evaluation models and techniques used to determine the EDM process conditions. This review also presents a discussion on developments in EDM and outlines the likely trend for future research.

18.
PLoS One ; 13(5): e0197673, 2018.
Article in English | MEDLINE | ID: mdl-29791498

ABSTRACT

Advanced graphics capabilities have enabled the use of virtual reality as an efficient design technique. The integration of virtual reality in the design phase still faces impediment because of issues linked to the integration of CAD and virtual reality software. A set of empirical tests using the selected conversion parameters was found to yield properly represented virtual reality models. The reduced model yields an R-sq (pred) value of 72.71% and an R-sq (adjusted) value of 86.64%, indicating that 86.64% of the response variability can be explained by the model. The R-sq (pred) is 67.45%, which is not very high, indicating that the model should be further reduced by eliminating insignificant terms. The reduced model yields an R-sq (pred) value of 73.32% and an R-sq (adjusted) value of 79.49%, indicating that 79.49% of the response variability can be explained by the model. Using the optimization software MODE Frontier (Optimization, MOGA-II, 2014), four types of response surfaces for the three considered response variables were tested for the data of DOE. The parameter values obtained using the proposed experimental design methodology result in better graphics quality, and other necessary design attributes.


Subject(s)
Software , Virtual Reality , Algorithms , Computer-Aided Design
19.
Disabil Rehabil Assist Technol ; 12(1): 3-20, 2017 01.
Article in English | MEDLINE | ID: mdl-26882961

ABSTRACT

This study presents a novel method for evaluating the scientific research papers in the field of assistive technologies pertaining to different impairment conditions. The objectives are to understand the technologies used for addressing the needs of PWD by identifying relevant criteria for the assessment, explore the implications of these technologies in their lives and identify the gaps among certain technologies in assisting PWD. In this article, we reviewed around 40 research scientific papers in relation to the technologies used to assist PWD in their daily activities. A novel quantitative assessment methodology based on Multi-weighted Scoring Model (MWSM) has been developed. It is based on the judgement of clinical experts according to thirteen well-defined criteria. The proposed method is useful because it assesses the scientific studies related to PWD qualitatively according to efficient research coverage, as well as quantitatively in order to have good comparative judgment. Moreover, this method recognizes the research gap or areas which need further investigation and identifies the research papers that have good coverage of the respective criteria. Implications for Rehabilitation Human computer interface (HCI) solutions are critical for addressing the main issues facing people with disabilities (PWD) in their life. Assessment of scientific research papers according to well-defined criteria that address PWD needs would assist in verifying their suitability for PWDs. Novel quantitative assessment methodology is used for assessing these research papers using judgment of experienced researchers according to 13 well-defined criteria that have been weighted according to relevancy to different impairment groups. Identifying research papers that have good coverage of defined criteria and knowing the research area that needs further investigation by researchers and developers, would ultimately address the rehabilitation needs for PWD.


Subject(s)
Disabled Persons/rehabilitation , Motor Disorders/rehabilitation , Self-Help Devices , Speech Disorders/rehabilitation , Vision Disorders/rehabilitation , Correction of Hearing Impairment/instrumentation , Humans , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...