Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 825: 137710, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38432355

ABSTRACT

Extensive experimental evidence points to neuroinflammation and oxidative stress as major pathogenic events that initiate and drive the neurodegenerative process. Monosodium glutamate (MSG) is a widely used food additive in processed foods known for its umami taste-enhancing properties. However, concerns about its potential adverse effects on the brain have been raised. Thus, the present study investigated the impact of MSG on lipopolysaccharide (LPS)-induced neurotoxicity in rat brains. Wistar rats weighing between 180 g and 200 g were randomly allocated into four groups: control (received distilled water), MSG (received 1.5 g/kg/day), LPS (received 250 µg/kg/day), and LPS + MSG (received LPS, 250 µg/kg, and MSG, 1.5 g/kg). LPS was administered intraperitoneally for 7 days while MSG was administered orally for 14 days. Our results showed that MSG exacerbated LPS-induced impairment in locomotor and exploratory activities in rats. Similarly, MSG exacerbated LPS-induced oxidative stress as evidenced by increased levels of malondialdehyde (MDA) with a concomitant decrease in levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione-s-transferase (GST) in the brain tissue. In addition, MSG potentiated LPS-induced neuroinflammation, as indicated by increased levels of pro-inflammatory cytokines such as interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) as well as myeloperoxidase (MPO) and nitric oxide (NO) in the brain. Moreover, MSG aggravated LPS-induced cholinergic dysfunction, as demonstrated by increased activity of acetylcholinesterase (AChE) in the brain. Further, we found a large number of degenerative neurons widespread in hippocampal CA1, CA3 regions, cerebellum, and cortex according to H&E staining. Taken together, our findings suggest that MSG aggravates LPS-induced neurobehavioral deficits, oxidative stress, neuroinflammation, cholinergic dysfunction, and neurodegeneration in rat brains.


Subject(s)
Lipopolysaccharides , Sodium Glutamate , Rats , Animals , Sodium Glutamate/toxicity , Lipopolysaccharides/toxicity , Rats, Wistar , Acetylcholinesterase/metabolism , Neuroinflammatory Diseases , Oxidative Stress , Glutathione/metabolism , Brain/metabolism , Cholinergic Agents/pharmacology
2.
Immunopharmacol Immunotoxicol ; 45(5): 558-564, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36927185

ABSTRACT

BACKGROUND: Liver damage is a global health concern associated with a high mortality rate. Sodium benzoate (SB) is a widely used preservative in the food industry with a wide range of applications. However, there's a lack of scientific reports on its effect on lipopolysaccharide-induced hepatic dysfunction. OBJECTIVE: The present study investigated the influence of SB on lipopolysaccharide (LPS)-induced liver injury. MATERIALS AND METHODS: Twenty-eight rats were randomly allocated into four groups: control (received distilled water), SB (received 600 mg/kg), LPS (received 0.25 mg/kg), and LPS + SB (received LPS, 0.25 mg/kg, and SB, 600 mg/kg). SB was administered orally for 14 days while LPS was administered intraperitoneally for 7 days. RESULTS: Administration of SB to rats with hepatocyte injury exacerbated liver damage with a significant increase in the activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). We also observed that SB aggravated LPS-mediated hepatic oxidative stress occasioned by a marked decrease in antioxidant status with a concomitant increase in lipid peroxidation. Furthermore, LPS - mediated increase in inflammatory biomarkers as well as histological deterioration in the liver was exacerbated following the administration of SB to rats. CONCLUSION: Taken together, the study provides experimental evidence that SB exacerbates hepatic oxidative stress and inflammation in LPS-mediated liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Rats , Animals , Lipopolysaccharides/toxicity , Sodium Benzoate/toxicity , Sodium Benzoate/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury, Chronic/pathology , Liver , Inflammation/pathology , Oxidative Stress , Chemical and Drug Induced Liver Injury/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...