Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 11477, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34075099

ABSTRACT

In many industrial sectors continuous processing is already the golden standard to maximize productivity. However, when working with living cells, subpopulation formation causes instabilities in long-term cultivations. In cascaded continuous cultivation, biomass formation and recombinant protein expression can be spatially separated. This cultivation mode was found to facilitate stable protein expression using microbial hosts, however mechanistic knowledge of this cultivation strategy is scarce. In this contribution we present a method workflow to reduce workload and accelerate the establishment of stable continuous processes with E. coli BL21(DE3) exclusively based on bioengineering methods.


Subject(s)
Biomass , Escherichia coli/growth & development , Bioengineering , Escherichia coli/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
2.
Int J Mol Sci ; 21(11)2020 May 29.
Article in English | MEDLINE | ID: mdl-32485932

ABSTRACT

The bacterium E. coli is one of the most important hosts for recombinant protein production. The benefits are high growth rates, inexpensive media, and high protein titers. However, complex proteins with high molecular weight and many disulfide bonds are expressed as inclusion bodies (IBs). In the last decade, the overall perception of these IBs being not functional proteins changed, as enzyme activity was found within IBs. Several applications for direct use of IBs are already reported in literature. While fluorescent proteins or protein tags are used for determination of IB activity to date, direct measurements of IB protein activity are scacre. The expression of recombinant hyaluronidase from Apis mellifera in E. coli BL21(DE3) was analyzed using a face centered design of experiment approach. Hyaluronidase is a hard to express protein and imposes a high metabolic burden to the host. Conditions giving a high specific IB titer were found at 25 °C at low specific substrate uptake rates and induction times of 2 to 4 h. The protein activity of hyaluronidase IBs was verified using (Fourier transform) FT-IR spectroscopy. Degradation of the substrate hyaluronan occurred at increased rates with higher IB concentrations. Active recombinant hyaluronidase IBs can be immediately used for direct degradation of hyaluronan without further down streaming steps. FT-IR spectroscopy was introduced as a method for tracking IB activity and showed differences in degradation behavior of hyaluronan dependent on the applied active IB concentration.


Subject(s)
Escherichia coli/metabolism , Hyaluronoglucosaminidase/biosynthesis , Inclusion Bodies/metabolism , Recombinant Proteins/biosynthesis , Animals , Bees , Biomass , Bioreactors , Culture Media/metabolism , Disulfides , Fermentation , Hyaluronic Acid/metabolism , Molecular Weight , Spectroscopy, Fourier Transform Infrared , Substrate Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...