Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(26): 11112-11119, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38887085

ABSTRACT

Although uranium oxide hydrate (UOH) minerals and synthetic phases have been extensively studied, the role of ammonium ions in the formation of UOH materials is not well understood. In this work, the stabilization of a synthetic UOH phase with ammonium ions and the inclusion of ammonium nitrate were investigated using a range of structural and spectroscopic techniques. Compound (NH4)2(NO3)[(UO2)3O2(OH)3] (U-N1) crystallises in the orthorhombic Pmn21 space group, having a layered structure with typical α-U3O8 type layers and interlayer (NH4)+ cations as well as (NO3)- anions. The presence of uranyl, (NH4)+ cations and (NO3)- anions were further confirmed with a combination of FTIR and Raman spectroscopies through characteristic vibrational modes. The roles of the (NH4)+ cations for charge compensation and facilitating the inclusion of (NO3)- anions via hydrogen bonding were revealed and discussed. The findings have implications for uranium geochemistry, reprocessing of spent nuclear fuel and possible spent nuclear fuel alteration pathways under geological disposal.

2.
Chem Asian J ; 19(11): e202400101, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38629889

ABSTRACT

Two uranium oxide hydrate frameworks (UOHFs) with either Dy3+ or Lu3+ ions, Dy1.36(H2O)6[(UO2)10UO13(OH)4] (UOHF-Dy) or Lu2(H2O)8[(UO2)10UO14(OH)3] (UOHF-Lu), were synthesized hydrothermally and characterized with a range of structural and spectroscopic techniques. Although SEM-EDS analysis confirmed the same atomic ratio of ~5.5 for U : Dy and U : Lu, they displayed different crystal morphologies, needles for UOHF-Dy in the orthorhombic C2221 space group and plates for UOHF-Lu in the triclinic P-1 space group. Both frameworks are composed of ß-U3O8 type layers linked by pentagonal bipyramidal uranium polyhedra, with the Dy3+/Lu3+ ions inside the channels. However, the arrangements of Dy3+/Lu3+ ions are different, with disordered Dy3+ ions well aligned at the centers of the channels and single Lu3+ ions well-separated in a zigzag pattern in the channels. While the characteristic vibrational modes were revealed by Raman spectroscopy, the presence of a pentavalent uranium center in UOHF-Lu was confirmed with diffuse reflectance spectroscopy. The formation of two types of UOHFs with lanthanide ions, high or low symmetry, and the structure trend were discussed regards to synthesis conditions and lanthanide ionic radius. This work highlights the complex chemistry driving the formation of UOHFs with lanthanide ions and has implications to the spent nuclear fuel under geological disposal.

3.
Dalton Trans ; 52(20): 6629-6640, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37115003

ABSTRACT

We report the synthesis of two new dual-cation uranium oxide hydrate (UOH) materials, containing both Cd2+ and K+ ions, along with their characterisation by means of single-crystal X-ray diffraction and a range of other structural and spectroscopic techniques. The materials were found to differ in structures, topology and uranium to cation ratios, with the layered UOH-Cd crystallising in a plate morphology and containing a U : Cd : K ratio of 3 : 1.5 : 1. Conversely, the framework-type UOF-Cd incorporates much less Cd, with a U : Cd : K ratio of 4.4 : 0.2 : 1 and is found as needle-like crystals. A common feature in both structures is the presence of ß-U3O8 type layers with a distinct uranium centre which lacks the expected uranyl bonds, highlighting the importance of the ß-U3O8 layer in the subsequent self-assembly and preferential formation of a variety of structural types. Most importantly, by exploiting the additional flexibility provided by monovalent cation species (i.e., K+) as secondary metal cations to synthesise these novel dual-cation materials, this work highlights the potential for broadening the scope of viable synthetic UOH phases towards furthering the understanding of these systems in their roles as alteration products in the surrounds of spent nuclear fuel in deep geological repositories.

4.
Dalton Trans ; 51(41): 15965-15973, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36196961

ABSTRACT

Two new mixed-valence uranium oxide hydrate frameworks (UOFs), incorporating either Er3+ or Y3+ ions, were successfully synthesised under hydrothermal conditions and characterised with single-crystal X-ray diffraction and a variety of other structural and spectroscopic techniques. Both frameworks are isostructural and crystallise in the triclinic P1̄ space group, consisting of ß-U3O8 type layers pillared by additional uranyl centres, with the Er3+/Y3+ ions lying in the channels of the framework. SEM-EDS analysis found that both materials existed in plate-like morphologies, with a U:Er/Y ratio of 5.5. Bond valence sum analysis revealed the possible existence of pentavalent uranium centres, which was confirmed with diffuse reflectance spectroscopy. Being the first reported UOFs in this space group, this work highlights the complex and flexible nature of these materials, and the broader uranium oxide hydrate systems which exist in the surrounds of spent nuclear fuel disposal in the underground repository.

5.
Inorg Chem ; 61(2): 1136-1144, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34978814

ABSTRACT

Herein, we report coupling in situ high temperature postsynthetic modifications (PSMs) in metal-organic frameworks (MOFs). Thermo-reactive propargyloxy-functionalized zinc IRMOFs (isoreticular metal-organic frameworks) prepared from 2-(prop-2-yn-1-yloxy)-[1,1'-biphenyl]-4,4'-dicarboxylic acid (H2bpdcOCH2CCH) were investigated for their high-temperature postsynthetic rearrangement (PSR) chemistry to heterocyclic chromenes and benzofurans and then coupled to solid-gas reactions with molecular oxygen. The selectivity for the initial molecular rearrangements was found to be inverted in the porous MOF environment compared to conventional melt reactions of the ester compound Me2bpdcOCH2CCH and proceeded far more easily than the solid-state transformation from H2bpdcOCH2CCH, showing the potential of MOFs to give rise to different chemistry. The major oxidative process was thermolysis of the chromene ring with a minor pathway of allylic-type oxidation to give heterocyclic chromenone functionality. The sequence was also successful on a series of two-component multivariate IRMOF frameworks prepared from thermo-reactive H2bpdcOCH2CCH and thermo-resistant H2bpdcOMe linkers, demonstrating that these reactions can be used with known crystal engineering strategies. All transformations were fully compatible with the requirements to maintain MOF crystallinity and porosity as evidenced by surface area analysis and X-ray powder diffraction measurements. This work contributes to establishing the feasibility of high-temperature solid-gas manifolds for MOF PSM.

6.
Front Chem ; 9: 706269, 2021.
Article in English | MEDLINE | ID: mdl-34277573

ABSTRACT

The structure of lead-technetium pyrochlore has been refined in space group F d 3 ¯ m with a = 10.36584(2) Å using a combination of synchrotron X-ray and neutron powder diffraction data and confirmed via Electron Diffraction. The oxide is found to be oxygen deficient with a stoichiometry of Pb2Tc2O7-d. Displacive disorder of the Pb cations is evident from the refinements, as has been observed in Bi2Tc2O7-d. X-ray absorption spectroscopic measurements at the Tc K-edge demonstrate the valence of the Tc is greater than 4.0 as anticipated from the refined oxygen stoichiometry. Raman spectroscopy confirms the presence of disorder leading us to conclude that this pyrochlore is the first example of a valence V technetium oxide.

SELECTION OF CITATIONS
SEARCH DETAIL
...