Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(11): e2304988, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37939305

ABSTRACT

Contact-induced electrification, commonly referred to as triboelectrification, is the subject of extensive investigation at liquid-solid interfaces due to its wide range of applications in electrochemistry, energy harvesting, and sensors. This study examines the triboelectric between an ionic liquid and 2D MoS2 under light illumination. Notably, when a liquid droplet slides across the MoS2 surface, an increase in the generated current and voltage is observed in the forward direction, while a decrease is observed in the reverse direction. This suggests a memory-like tribo-phototronic effect between ionic liquid and 2D MoS2 . The underlying mechanism behind this tribo-phototronic synaptic plasticity is proposed to be ion adsorption/desorption processes resulting from pseudocapacitive deionization/ionization at the liquid-MoS2  interface. This explanation is supported by the equivalent electrical circuit modeling, contact angle measurements, and electronic band diagrams. Furthermore, the influence of various factors such as velocity, step size, light wavelength and intensity, ion concentration, and bias voltage is thoroughly investigated. The artificial synaptic plasticity arising from this phenomenon exhibits significant synaptic features, including potentiation/inhibition, paired-pulse facilitation/depression, and short-term memory (STM) to long-term memory (LTM) transition. This research opens up promising avenues for the development of synaptic memory systems and intelligent sensing applications based on liquid-solid interfaces.

2.
Nanotechnology ; 34(28)2023 May 02.
Article in English | MEDLINE | ID: mdl-37019101

ABSTRACT

Self-powered broadband photodetectors have attracted great interest due to their applications in biomedical imaging, integrated circuits, wireless communication systems, and optical switches. Recently, significant research is being carried out to develop high-performance self-powered photodetectors based on thin 2D materials and their heterostructures due to their unique optoelectronic properties. Herein, a vertical heterostructure based on p-type 2D WSe2and n-type thin film ZnO is realized for photodetectors with a broadband response in the wavelength range of 300-850 nm. Due to the formation of a built-in electric field at the WSe2/ZnO interface and the photovoltaic effect, this structure exhibits a rectifying behavior with a maximum photoresponsivity and detectivity of ∼131 mA W-1and ∼3.92 × 1010Jones, respectively, under an incident light wavelength ofλ= 300 nm at zero voltage bias. It also shows a 3-dB cut-off frequency of ∼300 Hz along with a fast response time of ∼496µs, making it suitable for high-speed self-powered optoelectronic applications. Furthermore, the facilitation of charge collection under reverse voltage bias results in a photoresponsivity as high as ∼7160 mA W-1and a large detectivity of ∼1.18 × 1011Jones at a bias voltage of -5 V. Hence, the p-WSe2/n-ZnO heterojunction is proposed as an excellent candidate for high-performance, self-powered, and broadband photodetectors.

3.
Adv Sci (Weinh) ; 10(10): e2205458, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36658730

ABSTRACT

Volatile organic compounds (VOCs) sensors have a broad range of applications including healthcare, process control, and air quality analysis. There are a variety of techniques for detecting VOCs such as optical, acoustic, electrochemical, and chemiresistive sensors. However, existing commercial VOC detectors have drawbacks such as high cost, large size, or lack of selectivity. Herein, a new sensing mechanism is demonstrated based on surface interactions between VOC and UV-excited 2D germanium sulfide (GeS), which provides an effective solution to distinguish VOCs. The GeS sensor shows a unique time-resolved electrical response to different VOC species, facilitating identification and qualitative measurement of VOCs. Moreover, machine learning is utilized to distinguish VOC species from their dynamic response via visualization with high accuracy. The proposed approach demonstrates the potential of 2D GeS as a promising candidate for selective miniature VOCs sensors in critical applications such as non-invasive diagnosis of diseases and health monitoring.

4.
Nat Commun ; 13(1): 7593, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36535944

ABSTRACT

The elevation of cytokine levels in body fluids has been associated with numerous health conditions. The detection of these cytokine biomarkers at low concentrations may help clinicians diagnose diseases at an early stage. Here, we report an asymmetric geometry MoS2 diode-based biosensor for rapid, label-free, highly sensitive, and specific detection of tumor necrosis factor-α (TNF-α), a proinflammatory cytokine. This sensor is functionalized with TNF-α binding aptamers to detect TNF-α at concentrations as low as 10 fM, well below the typical concentrations found in healthy blood. Interactions between aptamers and TNF-α at the sensor surface induce a change in surface energy that alters the current-voltage rectification behavior of the MoS2 diode, which can be read out using a two-electrode configuration. The key advantages of this diode sensor are the simple fabrication process and electrical readout, and therefore, the potential to be applied in a rapid and easy-to-use, point-of-care, diagnostic tool.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Cytokines , Molybdenum , Tumor Necrosis Factor-alpha , Biosensing Techniques/methods
5.
ACS Omega ; 7(51): 48383-48390, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36591213

ABSTRACT

As a new class of two-dimensional (2D) materials and a group-VI chalcogen, tellurium (Te) has emerged as a p-type semiconductor with high carrier mobility. Potential applications include high-speed opto-electronic devices for communication. One method to enhance the performance of 2D material-based photodetectors is by integration with a IV group of semiconductors such as silicon (Si). In this work, we demonstrate a self-powered, high-speed, broadband photodetector based on the 2D Te/n-type Si heterojunction. The fabricated Te/n-type Si heterojunction exhibits high performance in the UV-vis-NIR light with a high responsivity of up to ∼250 mA/W and a photocurrent-to-dark current ratio (I on/I off) of ∼106, fast response time of 8.6 µs, and superior repeatability and stability. The results show that the fabricated Te/n-type Si heterojunction photodetector has a strong potential to be utilized in ultrafast, broadband, and efficient photodetection applications.

6.
ACS Appl Mater Interfaces ; 13(38): 45843-45853, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34542262

ABSTRACT

Recently, atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDs) have attracted great interest in electronic and opto-electronic devices for high-integration-density applications such as data storage due to their small vertical dimension and high data storage capability. Here, we report a memristor based on free-standing multilayer molybdenum disulfide (MoS2) with a high current on/off ratio of ∼103 and a stable retention for at least 3000 s. Through light modulation of the carrier density in the suspended MoS2 channel, the on/off ratio can be further increased to ∼105. Moreover, the essential photosynaptic functions with short- and long-term memory (STM and LTM) behaviors are successfully mimicked by such devices. These results also indicate that STM can be transferred to LTM by increasing the light stimuli power, pulse duration, and number of pulses. The electrical measurements performed under vacuum and ambient air conditions propose that the observed resistive switching is due to adsorbed oxygen and water molecules on both sides of the MoS2 channel. Thus, our free-standing 2D multilayer MoS2-based memristors propose a simple approach for fabrication of a low-power-consumption and reliable resistive switching device for neuromorphic applications.

7.
Nanotechnology ; 28(25): 255404, 2017 Jun 23.
Article in English | MEDLINE | ID: mdl-28475109

ABSTRACT

Here, we report 3D hierarchical SnO2 nanowire (NW) core-amorphous silicon shell on free-standing carbon nanotube paper (SnO2@a-Si/CNT paper) as an effective anode for flexible lithium-ion battery (LIB) application. This binder-free electrode exhibits a high initial discharge capacity of 3020 mAh g-1 with a large reversible charge capacity of 1250 mAh g-1 at a current density of 250 mA g-1. Compared to other SnO2 NW or its core-shell nanostructured anodes, the fabricated SnO2@a-Si/CNT structure demonstrates an outstanding performance with high mass loading (∼5.9 mg cm-2), high areal capacity (∼5.2 mAh cm-2), and large volumetric capacity (∼1750 mAh cm-3) after 25 cycles. Due to the incorporation of CNT paper as the current collector, the weight and thickness of the total electrode is effectively reduced with respect to the conventional LIB anodes. The fabricated electrode has a total thickness of only 30 µm and considering the total weight of the electrode (active mass + current collector), an initial discharge/charge capacity of 2460/1018 mAh g-1 is obtained. Hence, this thin, lightweight and highly flexible structure is proposed as an excellent candidate for high-performance LIB anode materials, especially in flexible electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...