Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Environ Health ; 34(4): 447-457, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31415239

ABSTRACT

Biobutanol offers several advantages and a larger market, that make it a biofuel to be studied with great interest. In fact, butanol has an energy content similar to that of gasoline, and it can be used as an alternative fuel to gasoline. It is a biofuel that is safe for the environment. The optimization of the production of butanol thus appears as an attractive option. Butanol production from food waste (FW) is a process for carbon recovery and a method for solid waste recycling. Recently, the use of FW and food processing waste (FPW) as raw material for the production of butanol has attracted much interest. However, an efficient fermentation process is vital to improve the production of biobutanol. To the best of our knowledge, no review on butanol production from FW has been presented so far. Thus, this review focuses on the characteristics of FW and its potential to produce butanol. In addition, the main factors that affect their use for the production of butanol are also discussed.


Subject(s)
Biofuels/analysis , Butanols/analysis , Food , Garbage , Refuse Disposal , Recycling
2.
Environ Sci Pollut Res Int ; 26(20): 20164-20182, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31115808

ABSTRACT

At present, diminishing oil resources and increasing environmental concerns have led to a shift toward the production of alternative biofuels. In the last few decades, butanol, as liquid biofuel, has received considerable research attention due to its advantages over ethanol. Several studies have focused on the production of butanol through the fermentation from raw renewable biomass, such as lignocellulosic materials. However, the low concentration and productivity of butanol production and the price of raw materials are limitations for butanol fermentation. Moreover, these limitations are the main causes of industrial decline in butanol production. This study reviews butanol fermentation, including the metabolism and characteristics of acetone-butanol-ethanol (ABE) producing clostridia. Furthermore, types of butanol production from biomass feedstock are detailed in this study. Specifically, this study introduces the recent progress on the efficient butanol production of "designed" and modified biomass. Additionally, the recent advances in the butanol fermentation process, such as multistage continuous fermentation, metabolic flow change of the electron carrier supplement, continuous fermentation with immobilization and recycling of cell, and the recent technical separation of the products from the fermentation broth, are described in this study.


Subject(s)
Biofuels/analysis , Butanols/analysis , Clostridium/metabolism , Fermentation , Biomass
3.
Rev Environ Health ; 34(1): 91-99, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30854832

ABSTRACT

Algae are increasingly emerging as one of the most promising sustainable and long-term sources of biomass and oils for fuel, feed food and other co-products. What makes them so attractive are the large number and wide variety of benefits associated with how and where they grow. This review presents added values and recent developments in resource recovery from microalgae. The main focus was in the cultivation and application of microalgae on biofuel recovery. Nearly all these benefits stem from the fact that these plants have evolved over billions of years to produce and store energy in the form of oil, and they do this more efficiently than any other known natural or engineered process. The results show that the investment in a microalgae biomass project can be associated with various processes, which include: growth of microalgae, harvesting, dehydration and extraction of oils. In addition, there are always project costs, which include engineering, infrastructure, installation and integration and contract fees.


Subject(s)
Biofuels/analysis , Microalgae/physiology , Renewable Energy , Biofuels/classification , Biofuels/economics , Biomass , Microalgae/growth & development , Renewable Energy/classification , Renewable Energy/economics
4.
Rev Environ Health ; 34(1): 57-68, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30685745

ABSTRACT

Bioethanol is currently the only alternative to gasoline that can be used immediately without having to make any significant changes in the way fuel is distributed. In addition, the carbon dioxide (CO2) released during the combustion of bioethanol is the same as that used by the plant in the atmosphere for its growth, so it does not participate in the increase of the greenhouse effect. Bioethanol can be obtained by fermentation of plants containing sucrose (beet, sugar cane…) or starch (wheat, corn…). However, large-scale use of bioethanol implies the use of very large agricultural surfaces for maize or sugarcane production. Lignocellulosic biomass (LCB) such as agricultural residues for the production of bioethanol seems to be a solution to this problem due to its high availability and low cost even if its growth still faces technological difficulties. In this review, we present an overview of lignocellulosic biomass, the different methods of pre-treatment of LCB and the various fermentation processes that can be used to produce bioethanol from LCB.


Subject(s)
Biofuels/analysis , Biomass , Ethanol/chemistry , Lignin/analysis , Fermentation , Hydrolysis
5.
Rev Environ Health ; 33(4): 441-447, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30291786

ABSTRACT

This paper reviews the current issues that involve environmental changes in Nigeria and environmental threats within the country. The fundamental aim of scientific knowledge in environmental studies is to reconcile climate change and environmental sustainability with developmental goals. Therefore, information on impact adaptation to climate change and vulnerability research is required to develop specific, action-oriented, interdisciplinary, successful, sociopolitical and democratic reform for the entire population of a country. This condition requires large inclusion of environmental researchers, institutions, re-inventing of research structures and ideas to dominate the global environmental change research and the critical analysis of present decision making, power, structure and related information structures. This review presents the effect of climate change in Nigeria and encourages adaptation research with challenging innovation, such as the use of energy-efficient renewable energy sources to significantly reduce greenhouse gas emissions. This paper also highlighted the need for researchers to become detailed, action oriented and multiscalar and to attend communications structure problems in enhancing the environmental activity.


Subject(s)
Acclimatization , Climate Change , Renewable Energy , Greenhouse Gases/analysis , Humans , Nigeria
6.
Rev Environ Health ; 33(4): 423-431, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30307898

ABSTRACT

Food waste generation and disposal have led to several environmental problems, especially in developing countries. This phenomenon is partly because most cities rapidly urbanize, which results in population increase, urban settlement and waste generation. Improper management of waste has continued to create environmental problems. These problems have indeed interfered with the inadequate measures in managing other organic waste such as food waste. Food waste can be fermented and used for pathogen inactivation in fecal sludge (FS). The continual decrease in global crop production due to soil erosion, nutrient runoff and loss of organic matter has generated interest in using FS for soil amendment. However, due to the high number of pathogens in FS that are harmful to humans, FS must be treated before being used in agriculture. Thus, given the high amounts of food waste generated globally and the lactic acid potential of fermented food waste, several researchers have recently proposed the use of fermented food waste to suppress pathogens in FS. This review presents the various approaches in pathogen inactivation in FS using different types of food waste. On the basis of the literature review, the major problems associated with the generation, collection and application of food waste in pathogen inactivation in FS are discussed. Moreover, the trends and challenges that concern the applicability of each method are critically reviewed.


Subject(s)
Bacteria/drug effects , Feces/microbiology , Garbage , Lactic Acid/administration & dosage , Sewage/microbiology , Solid Waste/analysis , Humans
8.
Rev Environ Health ; 33(2): 135-146, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29694331

ABSTRACT

The use of a large number of organic pollutants results in the accumulation of effluents at the places of production and the environment. These substances are, therefore, dangerous for living organisms and can cause heavy environmental damage. Hence, to cure these problems certain methods were used for the elimination of organic effluents. Indeed, the methods of elimination through magnetic adsorption and/or separation prove to be effective in the treatment of certain wastes, but the effectiveness of each one of these methods depends on several characteristics and also present limitations according to the pollutants they adsorb. This review examines on the one hand the capacity of certain elements of these methods in the elimination of certain pollutants and on the other hand the advantages and limits of these methods. Elements like biochars, biosorbents and composite materials are used due to their very strong porosity which makes it possible for them to develop an important contact surface with the external medium, at low costs, and the possibility of producing them from renewable sources. The latter still run up however against the problems of formation of mud and regeneration. Depollution by magnetic separation is also used due to its capacity to mitigate the disadvantages of certain methods which generally lead to the formation of mud and overcoming also the difficulties like obtaining an active material and at the same time being able to fix the pollutants present in the effluents to treat and sensitize them to external magnetic fields.


Subject(s)
Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...