Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Drug Resist ; 15: 4321-4334, 2022.
Article in English | MEDLINE | ID: mdl-35971557

ABSTRACT

Background: Gallibacterium anatis is incriminated frequently in severe economic losses and mortalities in the poultry industry. This study aimed to detect the prevalence of G. anatis in layer chickens, sequence analysis, the antibiogram profiles, and PCR screening of virulence determinants and antibiotic resistance genes. Methods: Accordingly, 300 samples (tracheal swabs, ovary and oviduct, and lung) were randomly collected from 100 diseased layer chickens from private commercial layer farms at Elsharkia Governorate, Egypt. The bacteriological examination was carried out. The retrieved isolates were tested for 16S rRNA-23S rRNA gene sequencing, antibiogram profiling, PCR screening of virulence (gtxA, fifA, and gyrB), and antibiotic resistance genes (bla ROB, aphA1, tetB, and tetH). Results: The prevalence of G. anatis was 25% in the examined diseased layer chickens. The sequence analyses emphasized that the tested strains derived from a common ancestor and exhibited a notable genetic similarity with other G. anatis strains from USA, China, and Denmark. The isolated G. anatis strains were highly resistant to sulfamethoxazole-trimethoprim, oxytetracycline, penicillin, ampicillin, kanamycin, neomycin, and erythromycin. The PCR revealed that the retrieved G. anatis strains carried gtxA, gyrB, and fifA virulence genes with a prevalence of 100%, 100%, and 38.3%, respectively. Approximately 30.1% of the retrieved G. anatis isolates were XDR to six antimicrobial classes and harbored bla ROB, aphA1, and tetB resistance genes. Moreover, 20.5% of the isolated G. anatis strains were MDR to three different classes and carried bla ROB and tetH resistance genes. Conclusion: Briefly, this study emphasized the existence of XDR and MDR G. anatis strains in poultry. Florfenicol and norfloxacin displayed a promising antimicrobial effect against the emerging XDR and MDR G. anatis in poultry. The emergence of XDR and MDR G. anatis is considered a public health alarm.

2.
Mycoses ; 62(12): 1116-1126, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31493312

ABSTRACT

BACKGROUND: Since accurate identification of dermatophyte species is essential for epidemiological studies and implementing antifungal treatment, overcoming limitations of conventional diagnostics is a fruitful subject. OBJECTIVES AND METHODS: In this study, we investigated real-time polymerase chain reaction(q-PCR), matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF MS) and nano-electrospray ionisation mass spectrometry (nano-ESI-MS) to detect and identify the most frequently isolated dermatophytes from human and animal dermatophytosis in comparison with conventional methods. RESULTS: Among 200 samples, the identified species were Microsporum canis (78.22%), Trichophyton verrucosum (10.89%) and T. mentagrophytes (5.94%). Q-PCR assay displayed great execution attributes for dermatophytes detection and identification. Using MALDI-TOF MS, M. canis, but none of T. violacium, T. verrucosum or T. mentagrophytes, could be identified. Nano-ESI-MS accurately identified all species. The potential virulence attributes of secreted proteases were anticipated and compared between species. Secreted endoproteases belonging to families/subfamilies of metalloproteases, subtilisins and aspartic protease were detected. The analysed exoproteases are aminopeptidases, dipeptidyl peptidases and carboxypeptidases. Microsporum canis have three immunogenic proteins, siderophore iron transporter mirB, protease inhibitors, plasma membrane proteolipid 3 and annexin. CONCLUSION: In essence, q-PCR, MALDI-TOF MS and nano-ESI-MS assays are very nearly defeating difficulties of dermatophytes detection and identification, thereby, supplement or supplant conventional diagnosis of dermatophytosis.


Subject(s)
Arthrodermataceae/classification , Dermatomycoses/microbiology , Proteomics , Adolescent , Adult , Animals , Arthrodermataceae/chemistry , Cats/microbiology , Cattle/microbiology , Child , DNA, Fungal/isolation & purification , Dermatomycoses/diagnosis , Dogs/microbiology , Female , Horses/microbiology , Humans , Male , Middle Aged , Sequence Analysis, DNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...