Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37242760

ABSTRACT

Wound healing has grown to be a significant problem at a global scale. The lack of multifunctionality in most wound dressing-based biopolymers prevents them from meeting all clinical requirements. Therefore, a multifunctional biopolymer-based tri-layered hierarchically nanofibrous scaffold in wound dressing can contribute to skin regeneration. In this study, a multifunctional antibacterial biopolymer-based tri-layered hierarchically nanofibrous scaffold comprising three layers was constructed. The bottom and the top layers contain hydrophilic silk fibroin (SF) and fish skin collagen (COL), respectively, for accelerated healing, interspersed with a middle layer of hydrophobic poly-3-hydroxybutyrate (PHB) containing amoxicillin (AMX) as an antibacterial drug. The advantageous physicochemical properties of the nanofibrous scaffold were estimated by SEM, FTIR, fluid uptake, contact angle, porosity, and mechanical properties. Moreover, the in vitro cytotoxicity and cell healing were assessed by MTT assay and the cell scratching method, respectively, and revealed excellent biocompatibility. The nanofibrous scaffold exhibited significant antimicrobial activity against multiple pathogenic bacteria. Furthermore, the in vivo wound healing and histological studies demonstrated complete wound healing in wounded rats on day 14, along with an increase in the expression level of the transforming growth factor-ß1 (TGF-ß1) and a decrease in the expression level of interleukin-6 (IL-6). The results revealed that the fabricated nanofibrous scaffold is a potent wound dressing scaffold, and significantly accelerates full-thickness wound healing in a rat model.

2.
Chem Pharm Bull (Tokyo) ; 69(1): 106-117, 2021.
Article in English | MEDLINE | ID: mdl-33390512

ABSTRACT

Cyclin dependent kinase 2 (CDK2) inhibition is a well-established strategy for treating cancer. Different series of novel thiazolone (1, 7-9) together with fused thiazolthione (2-6, and 10) derivatives were designed, then synthesized and evaluated for their biological inhibitory activity against CDK2. Additionally, the cytotoxicity of the new compounds was explored against breast and colon cancer cell lines. The novel thiazolone and the fused thiazolthione derivatives exhibited potent CDK2/cyclin A2 inhibitory effect of an IC50 values ranging 105.39-742.78 nM. Amongst them compounds 4 and 6 revealed highest IC50 of 105.39 and 139.27 nM, respectively. Most compounds showed significant inhibition on both breast cancer and colon cancer cell lines with IC50 range 0.54-5.26 and 0.83-278 µM, respectively. Further investigations involved flow cytometry analysis on MCF-7 cancer cell line for compounds 5 and 7 which resulted in arrest cell-cycle at two phases Pre G1/G2-M and re-enforced apoptosis via activation of caspase-7. Molecular modeling simulation of the designed compounds revealed that they were well fitted into CDK2 active site and their complexes were stabilized through the essential hydrogen bonding. Three dimensional quantitative structure activity relationship (3D QSAR) pharmacophore, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies were also carried out showing proper pharmacokinetic and drug-likeness which aided in the prediction of the structure requirements responsible for the observed antitumor activity.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Drug Design , Protein Kinase Inhibitors/pharmacology , Thiazoles/pharmacology , Thiones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 2/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Quantitative Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , Thiones/chemical synthesis , Thiones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...