Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37513920

ABSTRACT

Diabetes mellitus is a major challenge for global health, and Bougainvillea spectabilis Willd. (B. spectabilis) is a widely used herbal remedy with diverse cultivars traditionally used for diabetes treatment. However, the comparative efficacy of these cultivars remains ambiguous. This study aimed to evaluate the D-pinitol content and DPPH radical-scavenging activity of methanolic leaves extracts of five B. spectabilis cultivars. Furthermore, the effects of these cultivars on various parameters, including blood glucose levels, oxidative stress markers, inflammatory cytokines, lipid profiles, liver enzymes, renal function markers, and histopathological changes, were assessed in STZ-induced diabetic rats after one month of oral daily treatment. All tested cultivars demonstrated significant improvements in the measured parameters, albeit to varying extents. Notably, the LOE cultivar, distinguished by its orange bracts, exhibited the highest efficacy, surpassing the effectiveness of glibenclamide, an antidiabetic medication, and displayed the highest concentration of D-pinitol. These findings underscore the importance of carefully selecting the appropriate B. spectabilis cultivar to maximize the antidiabetic efficacy, with a particular emphasis on the correlation between antidiabetic activity and D-pinitol concentrations.

3.
Sci Rep ; 13(1): 7635, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169909

ABSTRACT

Iron overload causes multiorgan dysfunction and serious damage. Alnus incana from the family Betulaceae, widely distributed in North America, is used for treating diseases. In this study, we investigated the iron chelating, antioxidant, anti-inflammatory, and antiapoptotic activities of the total and butanol extract from Alnus incana in iron-overloaded rats and identified the bioactive components in both extracts using liquid chromatography-mass spectrometry. We induced iron overload in the rats via six intramuscular injections of 12.5 mg iron dextran/100 g body weight for 30 days. The rats were then administered 60 mg ferrous sulfate /kg body weight once daily using a gastric tube. The total and butanol extracts were given orally, and the reference drug (deferoxamine) was administered subcutaneously for another month. After two months, we evaluated the biochemical, histopathological, histochemical, and immunohistochemical parameters. Iron overload significantly increased the serum iron level, liver biomarker activities, hepatic iron content, malondialdehyde, tumor necrosis factor-alpha, and caspase-3 levels. It also substantially (P < 0.05) reduced serum albumin, total protein, and total bilirubin content, and hepatic reduced glutathione levels. It caused severe histopathological alterations compared to the control rats, which were markedly (P < 0.05) ameliorated after treatment. The total extract exhibited significantly higher anti-inflammatory and antiapoptotic activities but lower antioxidant and iron-chelating activities than the butanol extract. Several polyphenolic compounds, including flavonoids and phenolic acids, were detected by ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) analysis. Our findings suggest that both extracts might alleviate iron overload-induced hepatoxicity and other pathological conditions characterized by hepatic iron overload, including thalassemia and sickle-cell anemia.


Subject(s)
Alnus , Chemical and Drug Induced Liver Injury , Iron Overload , Rats , Animals , Antioxidants/metabolism , Plant Extracts/chemistry , Iron Overload/metabolism , Iron/metabolism , Liver/metabolism , Chemical and Drug Induced Liver Injury/pathology , Anti-Inflammatory Agents/pharmacology , Butanols/metabolism
4.
Molecules ; 28(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37241923

ABSTRACT

Infectious diseases caused by viruses and bacteria are a major public health concern worldwide, with the emergence of antibiotic resistance, biofilm-forming bacteria, viral epidemics, and the lack of effective antibacterial and antiviral agents exacerbating the problem. In an effort to search for new antimicrobial agents, this study aimed to screen antibacterial and antiviral activity of the total methanol extract and its various fractions of Pulicaria crispa (P. crispa) aerial parts. The P. crispa hexane fraction (HF) was found to have the strongest antibacterial effect against both Gram-positive and Gram-negative bacteria, including biofilm producers. The HF fraction reduced the expression levels of penicillin binding protein (PBP2A) and DNA gyrase B enzymes in Staphylococcus aureus and Pseudomonas aeruginosa, respectively. Additionally, the HF fraction displayed the most potent antiviral activity, especially against influenza A virus, affecting different stages of the virus lifecycle. Gas chromatography/mass spectrometry (GC/MS) analysis of the HF fraction identified 27 compounds, mainly belonging to the sterol class, with ß-sitosterol, phytol, stigmasterol, and lupeol as the most abundant compounds. The in silico study revealed that these compounds were active against influenza A nucleoprotein and polymerase, PBP2A, and DNA gyrase B. Overall, this study provides valuable insights into the chemical composition and mechanism of action of the P. crispa HF fraction, which may lead to the development of more effective treatments for bacterial and viral infections.


Subject(s)
Asteraceae , Pulicaria , Viruses , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antiviral Agents/pharmacology , Pulicaria/chemistry , DNA Gyrase/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Bacteria , Biofilms , Plant Extracts/pharmacology , Plant Extracts/chemistry
5.
J Ethnopharmacol ; 295: 115439, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35667581

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Viscum cruciatum Sieb is a well-known medicinal plant in Jordan containing various secondary metabolites. It has traditionally been used to treat many ailments, most notably cancer. However, there is a significant gap between scientific research and its value in traditional medicine. AIM OF THE WORK: To evaluate the antiproliferative activity of different V. cruciatum extracts against MCF-7 breast cancer cell lines and recognize the affected cell cycle phase. Besides, identifying the bioactive components present in the active extract using LC/MS technique. Also, to determine the possible mechanism of action by in silico and in-vitro study. MATERIALS AND METHODS: V. cruciatum was extracted using solvents with increasing polarity. The antiproliferative effects of the extracts against MCF-7 cell lines were evaluated using SRB assay. Further, flow cytometry was used to identify the inhibited phase of the cell cycle, while LC/MS-MS technique was used to analyze the chemical composition of the most active extract. After that, the putative mechanism of action was investigated through in-silico docking, molecular dynamic simulation for compounds with the highest docking scores, and Western blot analysis of cyclin-dependent kinases (CDK2/4/6). RESULTS: The chloroform/methanol 90/10 (ChMe) extract showed the most potent antiproliferative effect against MCF-7 cells (IC50 = 23.8 µg/mL), and cell cycle arrest at the G0/G1phase. Furthermore, LC-MS/MS analysis revealed the presence of several polyphenolics belonging to the flavonoids and phenolic acids classes. Additionally, quercetin-4'-glucoside, 3, 5, 7-trihydroxy-4'-methoxy flavone, and hesperetin-7-O-neohesperidoside demonstrated the highest docking binding scores and stable complexes against CDK2 and CDK4/6. Moreover, RMSD (root-mean-square deviation), RMSF (root-mean-square fluctuation), Rg (radius of gyration), and energy analysis during molecular dynamic simulation indicated the stable binding of the studied complexes. These results were supported by Western blot analysis, which revealed the downregulation of CDK2, CDK4, and CDK6 protein expression in MCF-7 cell lines. CONCLUSION: These findings emphasized the potential breast anticancer activity of the V. cruciatum ChMe extract by arresting the G0/G1 phase of the cell cycle, which could be related to its flavonoid content. Moreover, the results provided experimental support for the traditional anticancer activity of V. cruciatum, and its ChMe extract might be a source of chemoprotective or chemotherapeutic isolates.


Subject(s)
Antineoplastic Agents, Phytogenic , Viscum , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Chromatography, Liquid , Flavonoids/pharmacology , G1 Phase Cell Cycle Checkpoints , Humans , MCF-7 Cells , Plant Extracts/therapeutic use , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...